MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem4 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem4 30105
Description: Lemma for trlsegvdeg 30109. (Contributed by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem4 (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))

Proof of Theorem trlsegvdeglem4
StepHypRef Expression
1 trlsegvdeg.ix . . 3 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
21dmeqd 5908 . 2 (𝜑 → dom (iEdg‘𝑋) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
3 dmres 6017 . 2 dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)
42, 3eqtrdi 2781 1 (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cin 3943  {csn 4630  cop 4636   class class class wbr 5149  dom cdm 5678  cres 5680  cima 5681  Fun wfun 6543  cfv 6549  (class class class)co 7419  0cc0 11140  ...cfz 13519  ..^cfzo 13662  chash 14325  Vtxcvtx 28881  iEdgciedg 28882  Trailsctrls 29576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-dm 5688  df-res 5690
This theorem is referenced by:  trlsegvdeglem6  30107  trlsegvdeg  30109
  Copyright terms: Public domain W3C validator