![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem4 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 30076. (Contributed by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | β’ π = (VtxβπΊ) |
trlsegvdeg.i | β’ πΌ = (iEdgβπΊ) |
trlsegvdeg.f | β’ (π β Fun πΌ) |
trlsegvdeg.n | β’ (π β π β (0..^(β―βπΉ))) |
trlsegvdeg.u | β’ (π β π β π) |
trlsegvdeg.w | β’ (π β πΉ(TrailsβπΊ)π) |
trlsegvdeg.vx | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vy | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vz | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.ix | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
trlsegvdeg.iy | β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
trlsegvdeg.iz | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0...π)))) |
Ref | Expression |
---|---|
trlsegvdeglem4 | β’ (π β dom (iEdgβπ) = ((πΉ β (0..^π)) β© dom πΌ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.ix | . . 3 β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) | |
2 | 1 | dmeqd 5903 | . 2 β’ (π β dom (iEdgβπ) = dom (πΌ βΎ (πΉ β (0..^π)))) |
3 | dmres 6012 | . 2 β’ dom (πΌ βΎ (πΉ β (0..^π))) = ((πΉ β (0..^π)) β© dom πΌ) | |
4 | 2, 3 | eqtrdi 2781 | 1 β’ (π β dom (iEdgβπ) = ((πΉ β (0..^π)) β© dom πΌ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β© cin 3940 {csn 4625 β¨cop 4631 class class class wbr 5144 dom cdm 5673 βΎ cres 5675 β cima 5676 Fun wfun 6537 βcfv 6543 (class class class)co 7413 0cc0 11133 ...cfz 13511 ..^cfzo 13654 β―chash 14316 Vtxcvtx 28848 iEdgciedg 28849 Trailsctrls 29543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5145 df-opab 5207 df-xp 5679 df-dm 5683 df-res 5685 |
This theorem is referenced by: trlsegvdeglem6 30074 trlsegvdeg 30076 |
Copyright terms: Public domain | W3C validator |