![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem4 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 30024. (Contributed by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | β’ π = (VtxβπΊ) |
trlsegvdeg.i | β’ πΌ = (iEdgβπΊ) |
trlsegvdeg.f | β’ (π β Fun πΌ) |
trlsegvdeg.n | β’ (π β π β (0..^(β―βπΉ))) |
trlsegvdeg.u | β’ (π β π β π) |
trlsegvdeg.w | β’ (π β πΉ(TrailsβπΊ)π) |
trlsegvdeg.vx | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vy | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vz | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.ix | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
trlsegvdeg.iy | β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
trlsegvdeg.iz | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0...π)))) |
Ref | Expression |
---|---|
trlsegvdeglem4 | β’ (π β dom (iEdgβπ) = ((πΉ β (0..^π)) β© dom πΌ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.ix | . . 3 β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) | |
2 | 1 | dmeqd 5902 | . 2 β’ (π β dom (iEdgβπ) = dom (πΌ βΎ (πΉ β (0..^π)))) |
3 | dmres 6001 | . 2 β’ dom (πΌ βΎ (πΉ β (0..^π))) = ((πΉ β (0..^π)) β© dom πΌ) | |
4 | 2, 3 | eqtrdi 2783 | 1 β’ (π β dom (iEdgβπ) = ((πΉ β (0..^π)) β© dom πΌ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 β© cin 3943 {csn 4624 β¨cop 4630 class class class wbr 5142 dom cdm 5672 βΎ cres 5674 β cima 5675 Fun wfun 6536 βcfv 6542 (class class class)co 7414 0cc0 11130 ...cfz 13508 ..^cfzo 13651 β―chash 14313 Vtxcvtx 28796 iEdgciedg 28797 Trailsctrls 29491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-dm 5682 df-res 5684 |
This theorem is referenced by: trlsegvdeglem6 30022 trlsegvdeg 30024 |
Copyright terms: Public domain | W3C validator |