| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trlsegvdeglem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for trlsegvdeg 30213. (Contributed by AV, 21-Feb-2021.) |
| Ref | Expression |
|---|---|
| trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
| trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
| trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
| trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| Ref | Expression |
|---|---|
| trlsegvdeglem7 | ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | trlsegvdeg.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | trlsegvdeg.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
| 4 | trlsegvdeg.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
| 5 | trlsegvdeg.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 6 | trlsegvdeg.w | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
| 7 | trlsegvdeg.vx | . . 3 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
| 8 | trlsegvdeg.vy | . . 3 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
| 9 | trlsegvdeg.vz | . . 3 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
| 10 | trlsegvdeg.ix | . . 3 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 11 | trlsegvdeg.iy | . . 3 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
| 12 | trlsegvdeg.iz | . . 3 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | trlsegvdeglem5 30210 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑌) = {(𝐹‘𝑁)}) |
| 14 | snfi 9062 | . 2 ⊢ {(𝐹‘𝑁)} ∈ Fin | |
| 15 | 13, 14 | eqeltrdi 2843 | 1 ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4606 〈cop 4612 class class class wbr 5124 dom cdm 5659 ↾ cres 5661 “ cima 5662 Fun wfun 6530 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 0cc0 11134 ...cfz 13529 ..^cfzo 13676 ♯chash 14353 Vtxcvtx 28980 iEdgciedg 28981 Trailsctrls 29675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-en 8965 df-fin 8968 |
| This theorem is referenced by: trlsegvdeg 30213 eupth2lem3lem2 30215 |
| Copyright terms: Public domain | W3C validator |