MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem7 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem7 30255
Description: Lemma for trlsegvdeg 30256. (Contributed by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem7 (𝜑 → dom (iEdg‘𝑌) ∈ Fin)

Proof of Theorem trlsegvdeglem7
StepHypRef Expression
1 trlsegvdeg.v . . 3 𝑉 = (Vtx‘𝐺)
2 trlsegvdeg.i . . 3 𝐼 = (iEdg‘𝐺)
3 trlsegvdeg.f . . 3 (𝜑 → Fun 𝐼)
4 trlsegvdeg.n . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
5 trlsegvdeg.u . . 3 (𝜑𝑈𝑉)
6 trlsegvdeg.w . . 3 (𝜑𝐹(Trails‘𝐺)𝑃)
7 trlsegvdeg.vx . . 3 (𝜑 → (Vtx‘𝑋) = 𝑉)
8 trlsegvdeg.vy . . 3 (𝜑 → (Vtx‘𝑌) = 𝑉)
9 trlsegvdeg.vz . . 3 (𝜑 → (Vtx‘𝑍) = 𝑉)
10 trlsegvdeg.ix . . 3 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
11 trlsegvdeg.iy . . 3 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
12 trlsegvdeg.iz . . 3 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12trlsegvdeglem5 30253 . 2 (𝜑 → dom (iEdg‘𝑌) = {(𝐹𝑁)})
14 snfi 9082 . 2 {(𝐹𝑁)} ∈ Fin
1513, 14eqeltrdi 2847 1 (𝜑 → dom (iEdg‘𝑌) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {csn 4631  cop 4637   class class class wbr 5148  dom cdm 5689  cres 5691  cima 5692  Fun wfun 6557  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  ...cfz 13544  ..^cfzo 13691  chash 14366  Vtxcvtx 29028  iEdgciedg 29029  Trailsctrls 29723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-fin 8988
This theorem is referenced by:  trlsegvdeg  30256  eupth2lem3lem2  30258
  Copyright terms: Public domain W3C validator