![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem7 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 29745. (Contributed by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | β’ π = (VtxβπΊ) |
trlsegvdeg.i | β’ πΌ = (iEdgβπΊ) |
trlsegvdeg.f | β’ (π β Fun πΌ) |
trlsegvdeg.n | β’ (π β π β (0..^(β―βπΉ))) |
trlsegvdeg.u | β’ (π β π β π) |
trlsegvdeg.w | β’ (π β πΉ(TrailsβπΊ)π) |
trlsegvdeg.vx | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vy | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vz | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.ix | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
trlsegvdeg.iy | β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
trlsegvdeg.iz | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0...π)))) |
Ref | Expression |
---|---|
trlsegvdeglem7 | β’ (π β dom (iEdgβπ) β Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.v | . . 3 β’ π = (VtxβπΊ) | |
2 | trlsegvdeg.i | . . 3 β’ πΌ = (iEdgβπΊ) | |
3 | trlsegvdeg.f | . . 3 β’ (π β Fun πΌ) | |
4 | trlsegvdeg.n | . . 3 β’ (π β π β (0..^(β―βπΉ))) | |
5 | trlsegvdeg.u | . . 3 β’ (π β π β π) | |
6 | trlsegvdeg.w | . . 3 β’ (π β πΉ(TrailsβπΊ)π) | |
7 | trlsegvdeg.vx | . . 3 β’ (π β (Vtxβπ) = π) | |
8 | trlsegvdeg.vy | . . 3 β’ (π β (Vtxβπ) = π) | |
9 | trlsegvdeg.vz | . . 3 β’ (π β (Vtxβπ) = π) | |
10 | trlsegvdeg.ix | . . 3 β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) | |
11 | trlsegvdeg.iy | . . 3 β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) | |
12 | trlsegvdeg.iz | . . 3 β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0...π)))) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | trlsegvdeglem5 29742 | . 2 β’ (π β dom (iEdgβπ) = {(πΉβπ)}) |
14 | snfi 9048 | . 2 β’ {(πΉβπ)} β Fin | |
15 | 13, 14 | eqeltrdi 2839 | 1 β’ (π β dom (iEdgβπ) β Fin) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 {csn 4629 β¨cop 4635 class class class wbr 5149 dom cdm 5677 βΎ cres 5679 β cima 5680 Fun wfun 6538 βcfv 6544 (class class class)co 7413 Fincfn 8943 0cc0 11114 ...cfz 13490 ..^cfzo 13633 β―chash 14296 Vtxcvtx 28521 iEdgciedg 28522 Trailsctrls 29212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7860 df-1o 8470 df-en 8944 df-fin 8947 |
This theorem is referenced by: trlsegvdeg 29745 eupth2lem3lem2 29747 |
Copyright terms: Public domain | W3C validator |