Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12-afv Structured version   Visualization version   GIF version

Theorem tz6.12-afv 47283
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12 6846. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
tz6.12-afv ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹'''𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem tz6.12-afv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ V)
2 vex 3440 . . . . . . . . 9 𝑦 ∈ V
32a1i 11 . . . . . . . 8 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ V)
4 df-br 5090 . . . . . . . . . 10 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
54biimpri 228 . . . . . . . . 9 (⟨𝐴, 𝑦⟩ ∈ 𝐹𝐴𝐹𝑦)
65adantl 481 . . . . . . . 8 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴𝐹𝑦)
7 breldmg 5848 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑦 ∈ V ∧ 𝐴𝐹𝑦) → 𝐴 ∈ dom 𝐹)
81, 3, 6, 7syl3anc 1373 . . . . . . 7 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
9 simpl 482 . . . . . . . . 9 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
10 velsn 4589 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
11 breq1 5092 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝑥 → (𝐴𝐹𝑦𝑥𝐹𝑦))
124, 11bitr3id 285 . . . . . . . . . . . . . . . . 17 (𝐴 = 𝑥 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1312eqcoms 2739 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1413eubidv 2581 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦 𝑥𝐹𝑦))
1514biimpd 229 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1610, 15sylbi 217 . . . . . . . . . . . . 13 (𝑥 ∈ {𝐴} → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1716com12 32 . . . . . . . . . . . 12 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1817adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1918ralrimiv 3123 . . . . . . . . . 10 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
20 fnres 6608 . . . . . . . . . . 11 ((𝐹 ↾ {𝐴}) Fn {𝐴} ↔ ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
21 fnfun 6581 . . . . . . . . . . 11 ((𝐹 ↾ {𝐴}) Fn {𝐴} → Fun (𝐹 ↾ {𝐴}))
2220, 21sylbir 235 . . . . . . . . . 10 (∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦 → Fun (𝐹 ↾ {𝐴}))
2319, 22syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → Fun (𝐹 ↾ {𝐴}))
249, 23jca 511 . . . . . . . 8 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2524ex 412 . . . . . . 7 (𝐴 ∈ dom 𝐹 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
268, 25syl 17 . . . . . 6 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
2726impr 454 . . . . 5 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
28 df-dfat 47229 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
29 afvfundmfveq 47248 . . . . . 6 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
3028, 29sylbir 235 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹𝐴))
3127, 30syl 17 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹'''𝐴) = (𝐹𝐴))
32 tz6.12 6846 . . . . 5 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
3332adantl 481 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹𝐴) = 𝑦)
3431, 33eqtrd 2766 . . 3 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹'''𝐴) = 𝑦)
3534ex 412 . 2 (𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹'''𝐴) = 𝑦))
36 eu2ndop1stv 47235 . . . . 5 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹𝐴 ∈ V)
3736pm2.24d 151 . . . 4 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (¬ 𝐴 ∈ V → (𝐹'''𝐴) = 𝑦))
3837adantl 481 . . 3 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (¬ 𝐴 ∈ V → (𝐹'''𝐴) = 𝑦))
3938com12 32 . 2 𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹'''𝐴) = 𝑦))
4035, 39pm2.61i 182 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹'''𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ∃!weu 2563  wral 3047  Vcvv 3436  {csn 4573  cop 4579   class class class wbr 5089  dom cdm 5614  cres 5616  Fun wfun 6475   Fn wfn 6476  cfv 6481   defAt wdfat 47226  '''cafv 47227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-aiota 47195  df-dfat 47229  df-afv 47230
This theorem is referenced by:  tz6.12-1-afv  47284
  Copyright terms: Public domain W3C validator