Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12-afv Structured version   Visualization version   GIF version

Theorem tz6.12-afv 47167
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12 6865. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
tz6.12-afv ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹'''𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem tz6.12-afv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ V)
2 vex 3448 . . . . . . . . 9 𝑦 ∈ V
32a1i 11 . . . . . . . 8 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ V)
4 df-br 5103 . . . . . . . . . 10 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
54biimpri 228 . . . . . . . . 9 (⟨𝐴, 𝑦⟩ ∈ 𝐹𝐴𝐹𝑦)
65adantl 481 . . . . . . . 8 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴𝐹𝑦)
7 breldmg 5863 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝑦 ∈ V ∧ 𝐴𝐹𝑦) → 𝐴 ∈ dom 𝐹)
81, 3, 6, 7syl3anc 1373 . . . . . . 7 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
9 simpl 482 . . . . . . . . 9 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
10 velsn 4601 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
11 breq1 5105 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝑥 → (𝐴𝐹𝑦𝑥𝐹𝑦))
124, 11bitr3id 285 . . . . . . . . . . . . . . . . 17 (𝐴 = 𝑥 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1312eqcoms 2737 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1413eubidv 2579 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦 𝑥𝐹𝑦))
1514biimpd 229 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1610, 15sylbi 217 . . . . . . . . . . . . 13 (𝑥 ∈ {𝐴} → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1716com12 32 . . . . . . . . . . . 12 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1817adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1918ralrimiv 3124 . . . . . . . . . 10 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
20 fnres 6627 . . . . . . . . . . 11 ((𝐹 ↾ {𝐴}) Fn {𝐴} ↔ ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
21 fnfun 6600 . . . . . . . . . . 11 ((𝐹 ↾ {𝐴}) Fn {𝐴} → Fun (𝐹 ↾ {𝐴}))
2220, 21sylbir 235 . . . . . . . . . 10 (∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦 → Fun (𝐹 ↾ {𝐴}))
2319, 22syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → Fun (𝐹 ↾ {𝐴}))
249, 23jca 511 . . . . . . . 8 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2524ex 412 . . . . . . 7 (𝐴 ∈ dom 𝐹 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
268, 25syl 17 . . . . . 6 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
2726impr 454 . . . . 5 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
28 df-dfat 47113 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
29 afvfundmfveq 47132 . . . . . 6 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
3028, 29sylbir 235 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹𝐴))
3127, 30syl 17 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹'''𝐴) = (𝐹𝐴))
32 tz6.12 6865 . . . . 5 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
3332adantl 481 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹𝐴) = 𝑦)
3431, 33eqtrd 2764 . . 3 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹'''𝐴) = 𝑦)
3534ex 412 . 2 (𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹'''𝐴) = 𝑦))
36 eu2ndop1stv 47119 . . . . 5 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹𝐴 ∈ V)
3736pm2.24d 151 . . . 4 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (¬ 𝐴 ∈ V → (𝐹'''𝐴) = 𝑦))
3837adantl 481 . . 3 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (¬ 𝐴 ∈ V → (𝐹'''𝐴) = 𝑦))
3938com12 32 . 2 𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹'''𝐴) = 𝑦))
4035, 39pm2.61i 182 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹'''𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2561  wral 3044  Vcvv 3444  {csn 4585  cop 4591   class class class wbr 5102  dom cdm 5631  cres 5633  Fun wfun 6493   Fn wfn 6494  cfv 6499   defAt wdfat 47110  '''cafv 47111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-aiota 47079  df-dfat 47113  df-afv 47114
This theorem is referenced by:  tz6.12-1-afv  47168
  Copyright terms: Public domain W3C validator