MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1lem1 Structured version   Visualization version   GIF version

Theorem uhgrspan1lem1 29234
Description: Lemma 1 for uhgrspan1 29237. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
Assertion
Ref Expression
uhgrspan1lem1 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)

Proof of Theorem uhgrspan1lem1
StepHypRef Expression
1 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
21fvexi 6875 . . 3 𝑉 ∈ V
32difexi 5288 . 2 (𝑉 ∖ {𝑁}) ∈ V
4 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
54fvexi 6875 . . 3 𝐼 ∈ V
65resex 6003 . 2 (𝐼𝐹) ∈ V
73, 6pm3.2i 470 1 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wnel 3030  {crab 3408  Vcvv 3450  cdif 3914  {csn 4592  dom cdm 5641  cres 5643  cfv 6514  Vtxcvtx 28930  iEdgciedg 28931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-uni 4875  df-res 5653  df-iota 6467  df-fv 6522
This theorem is referenced by:  uhgrspan1lem2  29235  uhgrspan1lem3  29236
  Copyright terms: Public domain W3C validator