MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1lem1 Structured version   Visualization version   GIF version

Theorem uhgrspan1lem1 29335
Description: Lemma 1 for uhgrspan1 29338. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
Assertion
Ref Expression
uhgrspan1lem1 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)

Proof of Theorem uhgrspan1lem1
StepHypRef Expression
1 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
21fvexi 6934 . . 3 𝑉 ∈ V
32difexi 5348 . 2 (𝑉 ∖ {𝑁}) ∈ V
4 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
54fvexi 6934 . . 3 𝐼 ∈ V
65resex 6058 . 2 (𝐼𝐹) ∈ V
73, 6pm3.2i 470 1 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  wnel 3052  {crab 3443  Vcvv 3488  cdif 3973  {csn 4648  dom cdm 5700  cres 5702  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932  df-res 5712  df-iota 6525  df-fv 6581
This theorem is referenced by:  uhgrspan1lem2  29336  uhgrspan1lem3  29337
  Copyright terms: Public domain W3C validator