| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspan1lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for uhgrspan1 29230. (Contributed by AV, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
| Ref | Expression |
|---|---|
| uhgrspan1lem1 | ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | fvexi 6872 | . . 3 ⊢ 𝑉 ∈ V |
| 3 | 2 | difexi 5285 | . 2 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
| 4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | 4 | fvexi 6872 | . . 3 ⊢ 𝐼 ∈ V |
| 6 | 5 | resex 6000 | . 2 ⊢ (𝐼 ↾ 𝐹) ∈ V |
| 7 | 3, 6 | pm3.2i 470 | 1 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 {crab 3405 Vcvv 3447 ∖ cdif 3911 {csn 4589 dom cdm 5638 ↾ cres 5640 ‘cfv 6511 Vtxcvtx 28923 iEdgciedg 28924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-res 5650 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: uhgrspan1lem2 29228 uhgrspan1lem3 29229 |
| Copyright terms: Public domain | W3C validator |