Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrspan1lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for uhgrspan1 27205. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
Ref | Expression |
---|---|
uhgrspan1lem1 | ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6677 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | difexi 5202 | . 2 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
5 | 4 | fvexi 6677 | . . 3 ⊢ 𝐼 ∈ V |
6 | 5 | resex 5876 | . 2 ⊢ (𝐼 ↾ 𝐹) ∈ V |
7 | 3, 6 | pm3.2i 474 | 1 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∉ wnel 3055 {crab 3074 Vcvv 3409 ∖ cdif 3857 {csn 4525 dom cdm 5528 ↾ cres 5530 ‘cfv 6340 Vtxcvtx 26901 iEdgciedg 26902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-sn 4526 df-pr 4528 df-uni 4802 df-res 5540 df-iota 6299 df-fv 6348 |
This theorem is referenced by: uhgrspan1lem2 27203 uhgrspan1lem3 27204 |
Copyright terms: Public domain | W3C validator |