| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspan1lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for uhgrspan1 29276. (Contributed by AV, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
| Ref | Expression |
|---|---|
| uhgrspan1lem1 | ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | fvexi 6831 | . . 3 ⊢ 𝑉 ∈ V |
| 3 | 2 | difexi 5263 | . 2 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
| 4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | 4 | fvexi 6831 | . . 3 ⊢ 𝐼 ∈ V |
| 6 | 5 | resex 5973 | . 2 ⊢ (𝐼 ↾ 𝐹) ∈ V |
| 7 | 3, 6 | pm3.2i 470 | 1 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 {crab 3395 Vcvv 3436 ∖ cdif 3894 {csn 4571 dom cdm 5611 ↾ cres 5613 ‘cfv 6476 Vtxcvtx 28969 iEdgciedg 28970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-sn 4572 df-pr 4574 df-uni 4855 df-res 5623 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: uhgrspan1lem2 29274 uhgrspan1lem3 29275 |
| Copyright terms: Public domain | W3C validator |