Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrspan1lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for uhgrspan1 27670. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
uhgrspan1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 |
Ref | Expression |
---|---|
uhgrspan1lem2 | ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 | |
2 | 1 | fveq2i 6777 | . 2 ⊢ (Vtx‘𝑆) = (Vtx‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) |
3 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
5 | uhgrspan1.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} | |
6 | 3, 4, 5 | uhgrspan1lem1 27667 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
7 | opvtxfv 27374 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) → (Vtx‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝑉 ∖ {𝑁})) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (Vtx‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝑉 ∖ {𝑁}) |
9 | 2, 8 | eqtri 2766 | 1 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∉ wnel 3049 {crab 3068 Vcvv 3432 ∖ cdif 3884 {csn 4561 〈cop 4567 dom cdm 5589 ↾ cres 5591 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 df-vtx 27368 |
This theorem is referenced by: uhgrspan1 27670 upgrres 27673 umgrres 27674 usgrres 27675 |
Copyright terms: Public domain | W3C validator |