| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspan1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for uhgrspan1 29237. (Contributed by AV, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
| uhgrspan1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| uhgrspan1lem2 | ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 | |
| 2 | 1 | fveq2i 6868 | . 2 ⊢ (Vtx‘𝑆) = (Vtx‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) |
| 3 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | uhgrspan1.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} | |
| 6 | 3, 4, 5 | uhgrspan1lem1 29234 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
| 7 | opvtxfv 28938 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) → (Vtx‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝑉 ∖ {𝑁})) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (Vtx‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝑉 ∖ {𝑁}) |
| 9 | 2, 8 | eqtri 2753 | 1 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3031 {crab 3411 Vcvv 3455 ∖ cdif 3919 {csn 4597 〈cop 4603 dom cdm 5646 ↾ cres 5648 ‘cfv 6519 Vtxcvtx 28930 iEdgciedg 28931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-iota 6472 df-fun 6521 df-fv 6527 df-1st 7977 df-vtx 28932 |
| This theorem is referenced by: uhgrspan1 29237 upgrres 29240 umgrres 29241 usgrres 29242 |
| Copyright terms: Public domain | W3C validator |