MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1lem2 Structured version   Visualization version   GIF version

Theorem uhgrspan1lem2 26599
Description: Lemma 2 for uhgrspan1 26601. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
uhgrspan1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
Assertion
Ref Expression
uhgrspan1lem2 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})

Proof of Theorem uhgrspan1lem2
StepHypRef Expression
1 uhgrspan1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
21fveq2i 6437 . 2 (Vtx‘𝑆) = (Vtx‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩)
3 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
5 uhgrspan1.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
63, 4, 5uhgrspan1lem1 26598 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)
7 opvtxfv 26303 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V) → (Vtx‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝑉 ∖ {𝑁}))
86, 7ax-mp 5 . 2 (Vtx‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝑉 ∖ {𝑁})
92, 8eqtri 2850 1 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1658  wcel 2166  wnel 3103  {crab 3122  Vcvv 3415  cdif 3796  {csn 4398  cop 4404  dom cdm 5343  cres 5345  cfv 6124  Vtxcvtx 26295  iEdgciedg 26296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-iota 6087  df-fun 6126  df-fv 6132  df-1st 7429  df-vtx 26297
This theorem is referenced by:  uhgrspan1  26601  upgrres  26604  umgrres  26605  usgrres  26606
  Copyright terms: Public domain W3C validator