MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1lem2 Structured version   Visualization version   GIF version

Theorem uhgrspan1lem2 29341
Description: Lemma 2 for uhgrspan1 29343. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
uhgrspan1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
Assertion
Ref Expression
uhgrspan1lem2 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})

Proof of Theorem uhgrspan1lem2
StepHypRef Expression
1 uhgrspan1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
21fveq2i 6914 . 2 (Vtx‘𝑆) = (Vtx‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩)
3 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
5 uhgrspan1.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
63, 4, 5uhgrspan1lem1 29340 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)
7 opvtxfv 29044 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V) → (Vtx‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝑉 ∖ {𝑁}))
86, 7ax-mp 5 . 2 (Vtx‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝑉 ∖ {𝑁})
92, 8eqtri 2764 1 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1538  wcel 2107  wnel 3045  {crab 3434  Vcvv 3479  cdif 3961  {csn 4632  cop 4638  dom cdm 5690  cres 5692  cfv 6566  Vtxcvtx 29036  iEdgciedg 29037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-iota 6519  df-fun 6568  df-fv 6574  df-1st 8019  df-vtx 29038
This theorem is referenced by:  uhgrspan1  29343  upgrres  29346  umgrres  29347  usgrres  29348
  Copyright terms: Public domain W3C validator