| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspan1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for uhgrspan1 29283. (Contributed by AV, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
| uhgrspan1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| uhgrspan1lem2 | ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 | |
| 2 | 1 | fveq2i 6831 | . 2 ⊢ (Vtx‘𝑆) = (Vtx‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) |
| 3 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | uhgrspan1.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} | |
| 6 | 3, 4, 5 | uhgrspan1lem1 29280 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
| 7 | opvtxfv 28984 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) → (Vtx‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝑉 ∖ {𝑁})) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (Vtx‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝑉 ∖ {𝑁}) |
| 9 | 2, 8 | eqtri 2756 | 1 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∉ wnel 3033 {crab 3396 Vcvv 3437 ∖ cdif 3895 {csn 4575 〈cop 4581 dom cdm 5619 ↾ cres 5621 ‘cfv 6486 Vtxcvtx 28976 iEdgciedg 28977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7927 df-vtx 28978 |
| This theorem is referenced by: uhgrspan1 29283 upgrres 29286 umgrres 29287 usgrres 29288 |
| Copyright terms: Public domain | W3C validator |