| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrspanop | Structured version Visualization version GIF version | ||
| Description: A spanning subgraph of a simple graph represented by an ordered pair is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017.) (Revised by AV, 16-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| usgrspanop | ⊢ (𝐺 ∈ USGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspanop.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrspanop.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | vex 3484 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ V) |
| 5 | simprl 771 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (Vtx‘𝑔) = 𝑉) | |
| 6 | simprr 773 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) | |
| 7 | simpl 482 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝐺 ∈ USGraph) | |
| 8 | 1, 2, 4, 5, 6, 7 | usgrspan 29312 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ USGraph) |
| 9 | 8 | ex 412 | . . 3 ⊢ (𝐺 ∈ USGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ USGraph)) |
| 10 | 9 | alrimiv 1927 | . 2 ⊢ (𝐺 ∈ USGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ USGraph)) |
| 11 | 1 | fvexi 6920 | . . 3 ⊢ 𝑉 ∈ V |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ USGraph → 𝑉 ∈ V) |
| 13 | 2 | fvexi 6920 | . . . 4 ⊢ 𝐸 ∈ V |
| 14 | 13 | resex 6047 | . . 3 ⊢ (𝐸 ↾ 𝐴) ∈ V |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝐺 ∈ USGraph → (𝐸 ↾ 𝐴) ∈ V) |
| 16 | 10, 12, 15 | gropeld 29050 | 1 ⊢ (𝐺 ∈ USGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 〈cop 4632 ↾ cres 5687 ‘cfv 6561 Vtxcvtx 29013 iEdgciedg 29014 USGraphcusgr 29166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 df-vtx 29015 df-iedg 29016 df-edg 29065 df-uhgr 29075 df-upgr 29099 df-umgr 29100 df-uspgr 29167 df-usgr 29168 df-subgr 29285 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |