| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspan1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for uhgrspan1 29247. (Contributed by AV, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
| uhgrspan1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| uhgrspan1lem3 | ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 | |
| 2 | 1 | fveq2i 6888 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) |
| 3 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | uhgrspan1.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} | |
| 6 | 3, 4, 5 | uhgrspan1lem1 29244 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
| 7 | opiedgfv 28951 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) → (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝐼 ↾ 𝐹)) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝐼 ↾ 𝐹) |
| 9 | 2, 8 | eqtri 2757 | 1 ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∉ wnel 3035 {crab 3419 Vcvv 3463 ∖ cdif 3928 {csn 4606 〈cop 4612 dom cdm 5665 ↾ cres 5667 ‘cfv 6540 Vtxcvtx 28940 iEdgciedg 28941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-iota 6493 df-fun 6542 df-fv 6548 df-2nd 7996 df-iedg 28943 |
| This theorem is referenced by: uhgrspan1 29247 upgrres 29250 umgrres 29251 usgrres 29252 |
| Copyright terms: Public domain | W3C validator |