MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1lem3 Structured version   Visualization version   GIF version

Theorem uhgrspan1lem3 29282
Description: Lemma 3 for uhgrspan1 29283. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
uhgrspan1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
Assertion
Ref Expression
uhgrspan1lem3 (iEdg‘𝑆) = (𝐼𝐹)

Proof of Theorem uhgrspan1lem3
StepHypRef Expression
1 uhgrspan1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
21fveq2i 6831 . 2 (iEdg‘𝑆) = (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩)
3 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
5 uhgrspan1.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
63, 4, 5uhgrspan1lem1 29280 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)
7 opiedgfv 28987 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V) → (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝐼𝐹))
86, 7ax-mp 5 . 2 (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝐼𝐹)
92, 8eqtri 2756 1 (iEdg‘𝑆) = (𝐼𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  wnel 3033  {crab 3396  Vcvv 3437  cdif 3895  {csn 4575  cop 4581  dom cdm 5619  cres 5621  cfv 6486  Vtxcvtx 28976  iEdgciedg 28977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-2nd 7928  df-iedg 28979
This theorem is referenced by:  uhgrspan1  29283  upgrres  29286  umgrres  29287  usgrres  29288
  Copyright terms: Public domain W3C validator