MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1lem3 Structured version   Visualization version   GIF version

Theorem uhgrspan1lem3 29337
Description: Lemma 3 for uhgrspan1 29338. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
uhgrspan1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
Assertion
Ref Expression
uhgrspan1lem3 (iEdg‘𝑆) = (𝐼𝐹)

Proof of Theorem uhgrspan1lem3
StepHypRef Expression
1 uhgrspan1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
21fveq2i 6923 . 2 (iEdg‘𝑆) = (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩)
3 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
5 uhgrspan1.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
63, 4, 5uhgrspan1lem1 29335 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)
7 opiedgfv 29042 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V) → (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝐼𝐹))
86, 7ax-mp 5 . 2 (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝐼𝐹)
92, 8eqtri 2768 1 (iEdg‘𝑆) = (𝐼𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  wnel 3052  {crab 3443  Vcvv 3488  cdif 3973  {csn 4648  cop 4654  dom cdm 5700  cres 5702  cfv 6573  Vtxcvtx 29031  iEdgciedg 29032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-2nd 8031  df-iedg 29034
This theorem is referenced by:  uhgrspan1  29338  upgrres  29341  umgrres  29342  usgrres  29343
  Copyright terms: Public domain W3C validator