| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgrspan1lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for uhgrspan1 29266. (Contributed by AV, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
| uhgrspan1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| uhgrspan1lem3 | ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 | |
| 2 | 1 | fveq2i 6829 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) |
| 3 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 5 | uhgrspan1.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} | |
| 6 | 3, 4, 5 | uhgrspan1lem1 29263 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
| 7 | opiedgfv 28970 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) → (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝐼 ↾ 𝐹)) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝐼 ↾ 𝐹) |
| 9 | 2, 8 | eqtri 2752 | 1 ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 {crab 3396 Vcvv 3438 ∖ cdif 3902 {csn 4579 〈cop 4585 dom cdm 5623 ↾ cres 5625 ‘cfv 6486 Vtxcvtx 28959 iEdgciedg 28960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-2nd 7932 df-iedg 28962 |
| This theorem is referenced by: uhgrspan1 29266 upgrres 29269 umgrres 29270 usgrres 29271 |
| Copyright terms: Public domain | W3C validator |