![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrspan1lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for uhgrspan1 29343. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
uhgrspan1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 |
Ref | Expression |
---|---|
uhgrspan1lem3 | ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 | |
2 | 1 | fveq2i 6914 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) |
3 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
5 | uhgrspan1.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} | |
6 | 3, 4, 5 | uhgrspan1lem1 29340 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
7 | opiedgfv 29047 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) → (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝐼 ↾ 𝐹)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝐼 ↾ 𝐹) |
9 | 2, 8 | eqtri 2764 | 1 ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∉ wnel 3045 {crab 3434 Vcvv 3479 ∖ cdif 3961 {csn 4632 〈cop 4638 dom cdm 5690 ↾ cres 5692 ‘cfv 6566 Vtxcvtx 29036 iEdgciedg 29037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-iota 6519 df-fun 6568 df-fv 6574 df-2nd 8020 df-iedg 29039 |
This theorem is referenced by: uhgrspan1 29343 upgrres 29346 umgrres 29347 usgrres 29348 |
Copyright terms: Public domain | W3C validator |