MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspan1lem3 Structured version   Visualization version   GIF version

Theorem uhgrspan1lem3 29236
Description: Lemma 3 for uhgrspan1 29237. (Contributed by AV, 19-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan1.v 𝑉 = (Vtx‘𝐺)
uhgrspan1.i 𝐼 = (iEdg‘𝐺)
uhgrspan1.f 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
uhgrspan1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
Assertion
Ref Expression
uhgrspan1lem3 (iEdg‘𝑆) = (𝐼𝐹)

Proof of Theorem uhgrspan1lem3
StepHypRef Expression
1 uhgrspan1.s . . 3 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩
21fveq2i 6868 . 2 (iEdg‘𝑆) = (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩)
3 uhgrspan1.v . . . 4 𝑉 = (Vtx‘𝐺)
4 uhgrspan1.i . . . 4 𝐼 = (iEdg‘𝐺)
5 uhgrspan1.f . . . 4 𝐹 = {𝑖 ∈ dom 𝐼𝑁 ∉ (𝐼𝑖)}
63, 4, 5uhgrspan1lem1 29234 . . 3 ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V)
7 opiedgfv 28941 . . 3 (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼𝐹) ∈ V) → (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝐼𝐹))
86, 7ax-mp 5 . 2 (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼𝐹)⟩) = (𝐼𝐹)
92, 8eqtri 2753 1 (iEdg‘𝑆) = (𝐼𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wnel 3031  {crab 3411  Vcvv 3455  cdif 3919  {csn 4597  cop 4603  dom cdm 5646  cres 5648  cfv 6519  Vtxcvtx 28930  iEdgciedg 28931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-iota 6472  df-fun 6521  df-fv 6527  df-2nd 7978  df-iedg 28933
This theorem is referenced by:  uhgrspan1  29237  upgrres  29240  umgrres  29241  usgrres  29242
  Copyright terms: Public domain W3C validator