![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgrspan1lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for uhgrspan1 29029. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
uhgrspan1.s | ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)⟩ |
Ref | Expression |
---|---|
uhgrspan1lem3 | ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan1.s | . . 3 ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)⟩ | |
2 | 1 | fveq2i 6884 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)⟩) |
3 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
5 | uhgrspan1.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} | |
6 | 3, 4, 5 | uhgrspan1lem1 29026 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
7 | opiedgfv 28736 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) → (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)⟩) = (𝐼 ↾ 𝐹)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (iEdg‘⟨(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)⟩) = (𝐼 ↾ 𝐹) |
9 | 2, 8 | eqtri 2752 | 1 ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∉ wnel 3038 {crab 3424 Vcvv 3466 ∖ cdif 3937 {csn 4620 ⟨cop 4626 dom cdm 5666 ↾ cres 5668 ‘cfv 6533 Vtxcvtx 28725 iEdgciedg 28726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-iota 6485 df-fun 6535 df-fv 6541 df-2nd 7969 df-iedg 28728 |
This theorem is referenced by: uhgrspan1 29029 upgrres 29032 umgrres 29033 usgrres 29034 |
Copyright terms: Public domain | W3C validator |