Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgrspan1lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for uhgrspan1 27573. (Contributed by AV, 19-Nov-2020.) |
Ref | Expression |
---|---|
uhgrspan1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspan1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
uhgrspan1.f | ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} |
uhgrspan1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 |
Ref | Expression |
---|---|
uhgrspan1lem3 | ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan1.s | . . 3 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉 | |
2 | 1 | fveq2i 6759 | . 2 ⊢ (iEdg‘𝑆) = (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) |
3 | uhgrspan1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | uhgrspan1.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
5 | uhgrspan1.f | . . . 4 ⊢ 𝐹 = {𝑖 ∈ dom 𝐼 ∣ 𝑁 ∉ (𝐼‘𝑖)} | |
6 | 3, 4, 5 | uhgrspan1lem1 27570 | . . 3 ⊢ ((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) |
7 | opiedgfv 27280 | . . 3 ⊢ (((𝑉 ∖ {𝑁}) ∈ V ∧ (𝐼 ↾ 𝐹) ∈ V) → (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝐼 ↾ 𝐹)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (iEdg‘〈(𝑉 ∖ {𝑁}), (𝐼 ↾ 𝐹)〉) = (𝐼 ↾ 𝐹) |
9 | 2, 8 | eqtri 2766 | 1 ⊢ (iEdg‘𝑆) = (𝐼 ↾ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 {crab 3067 Vcvv 3422 ∖ cdif 3880 {csn 4558 〈cop 4564 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-2nd 7805 df-iedg 27272 |
This theorem is referenced by: uhgrspan1 27573 upgrres 27576 umgrres 27577 usgrres 27578 |
Copyright terms: Public domain | W3C validator |