| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisnif | Structured version Visualization version GIF version | ||
| Description: Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| unisnif | ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4497 | . . . 4 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) | |
| 2 | unisng 4892 | . . . 4 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
| 3 | 1, 2 | eqtr4d 2768 | . . 3 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
| 4 | iffalse 4500 | . . . 4 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∅) | |
| 5 | snprc 4684 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 6 | 5 | biimpi 216 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 7 | 6 | unieqd 4887 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∪ ∅) |
| 8 | uni0 4902 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 9 | 7, 8 | eqtrdi 2781 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∅) |
| 10 | 4, 9 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
| 11 | 3, 10 | pm2.61i 182 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴} |
| 12 | 11 | eqcomi 2739 | 1 ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ifcif 4491 {csn 4592 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-uni 4875 |
| This theorem is referenced by: dfrdg4 35946 |
| Copyright terms: Public domain | W3C validator |