| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisnif | Structured version Visualization version GIF version | ||
| Description: Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| unisnif | ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4480 | . . . 4 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) | |
| 2 | unisng 4876 | . . . 4 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
| 3 | 1, 2 | eqtr4d 2771 | . . 3 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
| 4 | iffalse 4483 | . . . 4 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∅) | |
| 5 | snprc 4669 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 6 | 5 | biimpi 216 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 7 | 6 | unieqd 4871 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∪ ∅) |
| 8 | uni0 4886 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 9 | 7, 8 | eqtrdi 2784 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∅) |
| 10 | 4, 9 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
| 11 | 3, 10 | pm2.61i 182 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴} |
| 12 | 11 | eqcomi 2742 | 1 ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ifcif 4474 {csn 4575 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-uni 4859 |
| This theorem is referenced by: dfrdg4 36016 |
| Copyright terms: Public domain | W3C validator |