Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisnif Structured version   Visualization version   GIF version

Theorem unisnif 34276
Description: Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
unisnif {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)

Proof of Theorem unisnif
StepHypRef Expression
1 iftrue 4471 . . . 4 (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴)
2 unisng 4865 . . . 4 (𝐴 ∈ V → {𝐴} = 𝐴)
31, 2eqtr4d 2779 . . 3 (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = {𝐴})
4 iffalse 4474 . . . 4 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∅)
5 snprc 4657 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
65biimpi 215 . . . . . 6 𝐴 ∈ V → {𝐴} = ∅)
76unieqd 4858 . . . . 5 𝐴 ∈ V → {𝐴} = ∅)
8 uni0 4875 . . . . 5 ∅ = ∅
97, 8eqtrdi 2792 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
104, 9eqtr4d 2779 . . 3 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = {𝐴})
113, 10pm2.61i 182 . 2 if(𝐴 ∈ V, 𝐴, ∅) = {𝐴}
1211eqcomi 2745 1 {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2104  Vcvv 3437  c0 4262  ifcif 4465  {csn 4565   cuni 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-uni 4845
This theorem is referenced by:  dfrdg4  34302
  Copyright terms: Public domain W3C validator