![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisnif | Structured version Visualization version GIF version |
Description: Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
unisnif | ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4381 | . . . 4 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) | |
2 | unisng 4754 | . . . 4 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
3 | 1, 2 | eqtr4d 2832 | . . 3 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
4 | iffalse 4384 | . . . 4 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∅) | |
5 | snprc 4554 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
6 | 5 | biimpi 217 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
7 | 6 | unieqd 4749 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∪ ∅) |
8 | uni0 4766 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
9 | 7, 8 | syl6eq 2845 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∅) |
10 | 4, 9 | eqtr4d 2832 | . . 3 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
11 | 3, 10 | pm2.61i 183 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴} |
12 | 11 | eqcomi 2802 | 1 ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1520 ∈ wcel 2079 Vcvv 3432 ∅c0 4206 ifcif 4375 {csn 4466 ∪ cuni 4739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-uni 4740 |
This theorem is referenced by: dfrdg4 32966 |
Copyright terms: Public domain | W3C validator |