Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisnif Structured version   Visualization version   GIF version

Theorem unisnif 35920
Description: Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
unisnif {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)

Proof of Theorem unisnif
StepHypRef Expression
1 iftrue 4497 . . . 4 (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴)
2 unisng 4892 . . . 4 (𝐴 ∈ V → {𝐴} = 𝐴)
31, 2eqtr4d 2768 . . 3 (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = {𝐴})
4 iffalse 4500 . . . 4 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∅)
5 snprc 4684 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
65biimpi 216 . . . . . 6 𝐴 ∈ V → {𝐴} = ∅)
76unieqd 4887 . . . . 5 𝐴 ∈ V → {𝐴} = ∅)
8 uni0 4902 . . . . 5 ∅ = ∅
97, 8eqtrdi 2781 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
104, 9eqtr4d 2768 . . 3 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = {𝐴})
113, 10pm2.61i 182 . 2 if(𝐴 ∈ V, 𝐴, ∅) = {𝐴}
1211eqcomi 2739 1 {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  ifcif 4491  {csn 4592   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-uni 4875
This theorem is referenced by:  dfrdg4  35946
  Copyright terms: Public domain W3C validator