Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisnif Structured version   Visualization version   GIF version

Theorem unisnif 35988
Description: Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
unisnif {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)

Proof of Theorem unisnif
StepHypRef Expression
1 iftrue 4480 . . . 4 (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴)
2 unisng 4876 . . . 4 (𝐴 ∈ V → {𝐴} = 𝐴)
31, 2eqtr4d 2771 . . 3 (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = {𝐴})
4 iffalse 4483 . . . 4 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∅)
5 snprc 4669 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
65biimpi 216 . . . . . 6 𝐴 ∈ V → {𝐴} = ∅)
76unieqd 4871 . . . . 5 𝐴 ∈ V → {𝐴} = ∅)
8 uni0 4886 . . . . 5 ∅ = ∅
97, 8eqtrdi 2784 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
104, 9eqtr4d 2771 . . 3 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = {𝐴})
113, 10pm2.61i 182 . 2 if(𝐴 ∈ V, 𝐴, ∅) = {𝐴}
1211eqcomi 2742 1 {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  ifcif 4474  {csn 4575   cuni 4858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-uni 4859
This theorem is referenced by:  dfrdg4  36016
  Copyright terms: Public domain W3C validator