Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisnif | Structured version Visualization version GIF version |
Description: Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
unisnif | ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4475 | . . . 4 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) | |
2 | unisng 4869 | . . . 4 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
3 | 1, 2 | eqtr4d 2780 | . . 3 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
4 | iffalse 4478 | . . . 4 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∅) | |
5 | snprc 4661 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
6 | 5 | biimpi 215 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
7 | 6 | unieqd 4862 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∪ ∅) |
8 | uni0 4879 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
9 | 7, 8 | eqtrdi 2793 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∅) |
10 | 4, 9 | eqtr4d 2780 | . . 3 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
11 | 3, 10 | pm2.61i 182 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴} |
12 | 11 | eqcomi 2746 | 1 ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4266 ifcif 4469 {csn 4569 ∪ cuni 4848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-uni 4849 |
This theorem is referenced by: dfrdg4 34314 |
Copyright terms: Public domain | W3C validator |