![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisnif | Structured version Visualization version GIF version |
Description: Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
unisnif | ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4554 | . . . 4 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = 𝐴) | |
2 | unisng 4949 | . . . 4 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
3 | 1, 2 | eqtr4d 2783 | . . 3 ⊢ (𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
4 | iffalse 4557 | . . . 4 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∅) | |
5 | snprc 4742 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
6 | 5 | biimpi 216 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
7 | 6 | unieqd 4944 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∪ ∅) |
8 | uni0 4959 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
9 | 7, 8 | eqtrdi 2796 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∅) |
10 | 4, 9 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝐴 ∈ V → if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴}) |
11 | 3, 10 | pm2.61i 182 | . 2 ⊢ if(𝐴 ∈ V, 𝐴, ∅) = ∪ {𝐴} |
12 | 11 | eqcomi 2749 | 1 ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ifcif 4548 {csn 4648 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: dfrdg4 35915 |
Copyright terms: Public domain | W3C validator |