| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffv5 | Structured version Visualization version GIF version | ||
| Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| dffv5 | ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffv3 6854 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) | |
| 2 | dfiota3 35911 | . 2 ⊢ (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∪ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) | |
| 3 | abid2 2865 | . . . . . 6 ⊢ {𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴}) | |
| 4 | 3 | sneqi 4600 | . . . . 5 ⊢ {{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} = {(𝐹 “ {𝐴})} |
| 5 | 4 | ineq1i 4179 | . . . 4 ⊢ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| 6 | 5 | unieqi 4883 | . . 3 ⊢ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| 7 | 6 | unieqi 4883 | . 2 ⊢ ∪ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| 8 | 1, 2, 7 | 3eqtri 2756 | 1 ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∩ cin 3913 {csn 4589 ∪ cuni 4871 “ cima 5641 ℩cio 6462 ‘cfv 6511 Singletons csingles 35827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-symdif 4216 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1st 7968 df-2nd 7969 df-txp 35842 df-singleton 35850 df-singles 35851 |
| This theorem is referenced by: brapply 35926 |
| Copyright terms: Public domain | W3C validator |