| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffv5 | Structured version Visualization version GIF version | ||
| Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| dffv5 | ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffv3 6824 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) | |
| 2 | dfiota3 35986 | . 2 ⊢ (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∪ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) | |
| 3 | abid2 2870 | . . . . . 6 ⊢ {𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴}) | |
| 4 | 3 | sneqi 4586 | . . . . 5 ⊢ {{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} = {(𝐹 “ {𝐴})} |
| 5 | 4 | ineq1i 4165 | . . . 4 ⊢ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| 6 | 5 | unieqi 4870 | . . 3 ⊢ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| 7 | 6 | unieqi 4870 | . 2 ⊢ ∪ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| 8 | 1, 2, 7 | 3eqtri 2760 | 1 ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {cab 2711 ∩ cin 3897 {csn 4575 ∪ cuni 4858 “ cima 5622 ℩cio 6440 ‘cfv 6486 Singletons csingles 35902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-symdif 4202 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-1st 7927 df-2nd 7928 df-txp 35917 df-singleton 35925 df-singles 35926 |
| This theorem is referenced by: brapply 36001 |
| Copyright terms: Public domain | W3C validator |