Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffv5 Structured version   Visualization version   GIF version

Theorem dffv5 34226
Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dffv5 (𝐹𝐴) = ({(𝐹 “ {𝐴})} ∩ Singletons )

Proof of Theorem dffv5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffv3 6770 . 2 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
2 dfiota3 34225 . 2 (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ({{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons )
3 abid2 2882 . . . . . 6 {𝑥𝑥 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴})
43sneqi 4572 . . . . 5 {{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} = {(𝐹 “ {𝐴})}
54ineq1i 4142 . . . 4 ({{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons )
65unieqi 4852 . . 3 ({{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons )
76unieqi 4852 . 2 ({{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons )
81, 2, 73eqtri 2770 1 (𝐹𝐴) = ({(𝐹 “ {𝐴})} ∩ Singletons )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  {cab 2715  cin 3886  {csn 4561   cuni 4839  cima 5592  cio 6389  cfv 6433   Singletons csingles 34141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-symdif 4176  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832  df-txp 34156  df-singleton 34164  df-singles 34165
This theorem is referenced by:  brapply  34240
  Copyright terms: Public domain W3C validator