Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffv5 Structured version   Visualization version   GIF version

Theorem dffv5 35897
Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.)
Assertion
Ref Expression
dffv5 (𝐹𝐴) = ({(𝐹 “ {𝐴})} ∩ Singletons )

Proof of Theorem dffv5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffv3 6822 . 2 (𝐹𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))
2 dfiota3 35896 . 2 (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ({{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons )
3 abid2 2865 . . . . . 6 {𝑥𝑥 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴})
43sneqi 4590 . . . . 5 {{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} = {(𝐹 “ {𝐴})}
54ineq1i 4169 . . . 4 ({{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons )
65unieqi 4873 . . 3 ({{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons )
76unieqi 4873 . 2 ({{𝑥𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons )
81, 2, 73eqtri 2756 1 (𝐹𝐴) = ({(𝐹 “ {𝐴})} ∩ Singletons )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  cin 3904  {csn 4579   cuni 4861  cima 5626  cio 6440  cfv 6486   Singletons csingles 35812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-symdif 4206  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7931  df-2nd 7932  df-txp 35827  df-singleton 35835  df-singles 35836
This theorem is referenced by:  brapply  35911
  Copyright terms: Public domain W3C validator