| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffv5 | Structured version Visualization version GIF version | ||
| Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| dffv5 | ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffv3 6872 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) | |
| 2 | dfiota3 35941 | . 2 ⊢ (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∪ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) | |
| 3 | abid2 2872 | . . . . . 6 ⊢ {𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴}) | |
| 4 | 3 | sneqi 4612 | . . . . 5 ⊢ {{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} = {(𝐹 “ {𝐴})} |
| 5 | 4 | ineq1i 4191 | . . . 4 ⊢ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| 6 | 5 | unieqi 4895 | . . 3 ⊢ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| 7 | 6 | unieqi 4895 | . 2 ⊢ ∪ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| 8 | 1, 2, 7 | 3eqtri 2762 | 1 ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 {cab 2713 ∩ cin 3925 {csn 4601 ∪ cuni 4883 “ cima 5657 ℩cio 6482 ‘cfv 6531 Singletons csingles 35857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-symdif 4228 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-1st 7988 df-2nd 7989 df-txp 35872 df-singleton 35880 df-singles 35881 |
| This theorem is referenced by: brapply 35956 |
| Copyright terms: Public domain | W3C validator |