Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffv5 | Structured version Visualization version GIF version |
Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.) |
Ref | Expression |
---|---|
dffv5 | ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffv3 6770 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) | |
2 | dfiota3 34225 | . 2 ⊢ (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) = ∪ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) | |
3 | abid2 2882 | . . . . . 6 ⊢ {𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴}) | |
4 | 3 | sneqi 4572 | . . . . 5 ⊢ {{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} = {(𝐹 “ {𝐴})} |
5 | 4 | ineq1i 4142 | . . . 4 ⊢ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ({(𝐹 “ {𝐴})} ∩ Singletons ) |
6 | 5 | unieqi 4852 | . . 3 ⊢ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
7 | 6 | unieqi 4852 | . 2 ⊢ ∪ ∪ ({{𝑥 ∣ 𝑥 ∈ (𝐹 “ {𝐴})}} ∩ Singletons ) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
8 | 1, 2, 7 | 3eqtri 2770 | 1 ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {cab 2715 ∩ cin 3886 {csn 4561 ∪ cuni 4839 “ cima 5592 ℩cio 6389 ‘cfv 6433 Singletons csingles 34141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-txp 34156 df-singleton 34164 df-singles 34165 |
This theorem is referenced by: brapply 34240 |
Copyright terms: Public domain | W3C validator |