Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brimage Structured version   Visualization version   GIF version

Theorem brimage 35904
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brimage.1 𝐴 ∈ V
brimage.2 𝐵 ∈ V
Assertion
Ref Expression
brimage (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))

Proof of Theorem brimage
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brimage.1 . 2 𝐴 ∈ V
2 brimage.2 . 2 𝐵 ∈ V
3 df-image 35842 . 2 Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝑅) ⊗ V)))
4 brxp 5668 . . 3 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
51, 2, 4mpbir2an 711 . 2 𝐴(V × V)𝐵
6 vex 3440 . . . . 5 𝑥 ∈ V
7 vex 3440 . . . . 5 𝑦 ∈ V
86, 7brcnv 5825 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
98rexbii 3076 . . 3 (∃𝑦𝐴 𝑥𝑅𝑦 ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
106, 1coep 35729 . . 3 (𝑥( E ∘ 𝑅)𝐴 ↔ ∃𝑦𝐴 𝑥𝑅𝑦)
116elima 6016 . . 3 (𝑥 ∈ (𝑅𝐴) ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
129, 10, 113bitr4ri 304 . 2 (𝑥 ∈ (𝑅𝐴) ↔ 𝑥( E ∘ 𝑅)𝐴)
131, 2, 3, 5, 12brtxpsd3 35874 1 (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436   class class class wbr 5092   E cep 5518   × cxp 5617  ccnv 5618  cima 5622  ccom 5623  Imagecimage 35818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-symdif 4204  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-1st 7924  df-2nd 7925  df-txp 35832  df-image 35842
This theorem is referenced by:  brimageg  35905  funimage  35906  fnimage  35907  imageval  35908  brdomain  35911  brrange  35912  brimg  35915  funpartlem  35920  imagesset  35931
  Copyright terms: Public domain W3C validator