| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brimage | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brimage.1 | ⊢ 𝐴 ∈ V |
| brimage.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brimage | ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brimage.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | brimage.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | df-image 35828 | . 2 ⊢ Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝑅) ⊗ V))) | |
| 4 | brxp 5703 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 5 | 1, 2, 4 | mpbir2an 711 | . 2 ⊢ 𝐴(V × V)𝐵 |
| 6 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | vex 3463 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 6, 7 | brcnv 5862 | . . . 4 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 9 | 8 | rexbii 3083 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
| 10 | 6, 1 | coep 35715 | . . 3 ⊢ (𝑥( E ∘ ◡𝑅)𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦) |
| 11 | 6 | elima 6052 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
| 12 | 9, 10, 11 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥( E ∘ ◡𝑅)𝐴) |
| 13 | 1, 2, 3, 5, 12 | brtxpsd3 35860 | 1 ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 class class class wbr 5119 E cep 5552 × cxp 5652 ◡ccnv 5653 “ cima 5657 ∘ ccom 5658 Imagecimage 35804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-symdif 4228 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fo 6536 df-fv 6538 df-1st 7986 df-2nd 7987 df-txp 35818 df-image 35828 |
| This theorem is referenced by: brimageg 35891 funimage 35892 fnimage 35893 imageval 35894 brdomain 35897 brrange 35898 brimg 35901 funpartlem 35906 imagesset 35917 |
| Copyright terms: Public domain | W3C validator |