| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brimage | Structured version Visualization version GIF version | ||
| Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| brimage.1 | ⊢ 𝐴 ∈ V |
| brimage.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brimage | ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brimage.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | brimage.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | df-image 35842 | . 2 ⊢ Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝑅) ⊗ V))) | |
| 4 | brxp 5668 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 5 | 1, 2, 4 | mpbir2an 711 | . 2 ⊢ 𝐴(V × V)𝐵 |
| 6 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 7 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 6, 7 | brcnv 5825 | . . . 4 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 9 | 8 | rexbii 3076 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
| 10 | 6, 1 | coep 35729 | . . 3 ⊢ (𝑥( E ∘ ◡𝑅)𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦) |
| 11 | 6 | elima 6016 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
| 12 | 9, 10, 11 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥( E ∘ ◡𝑅)𝐴) |
| 13 | 1, 2, 3, 5, 12 | brtxpsd3 35874 | 1 ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3436 class class class wbr 5092 E cep 5518 × cxp 5617 ◡ccnv 5618 “ cima 5622 ∘ ccom 5623 Imagecimage 35818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-symdif 4204 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-1st 7924 df-2nd 7925 df-txp 35832 df-image 35842 |
| This theorem is referenced by: brimageg 35905 funimage 35906 fnimage 35907 imageval 35908 brdomain 35911 brrange 35912 brimg 35915 funpartlem 35920 imagesset 35931 |
| Copyright terms: Public domain | W3C validator |