Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brimage | Structured version Visualization version GIF version |
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brimage.1 | ⊢ 𝐴 ∈ V |
brimage.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brimage | ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brimage.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brimage.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | df-image 33903 | . 2 ⊢ Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝑅) ⊗ V))) | |
4 | brxp 5598 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 1, 2, 4 | mpbir2an 711 | . 2 ⊢ 𝐴(V × V)𝐵 |
6 | vex 3412 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | vex 3412 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | brcnv 5751 | . . . 4 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
9 | 8 | rexbii 3170 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
10 | 6, 1 | coep 33437 | . . 3 ⊢ (𝑥( E ∘ ◡𝑅)𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦) |
11 | 6 | elima 5934 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
12 | 9, 10, 11 | 3bitr4ri 307 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥( E ∘ ◡𝑅)𝐴) |
13 | 1, 2, 3, 5, 12 | brtxpsd3 33935 | 1 ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 Vcvv 3408 class class class wbr 5053 E cep 5459 × cxp 5549 ◡ccnv 5550 “ cima 5554 ∘ ccom 5555 Imagecimage 33879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-symdif 4157 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-eprel 5460 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fo 6386 df-fv 6388 df-1st 7761 df-2nd 7762 df-txp 33893 df-image 33903 |
This theorem is referenced by: brimageg 33966 funimage 33967 fnimage 33968 imageval 33969 brdomain 33972 brrange 33973 brimg 33976 funpartlem 33981 imagesset 33992 |
Copyright terms: Public domain | W3C validator |