Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brimage Structured version   Visualization version   GIF version

Theorem brimage 34155
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brimage.1 𝐴 ∈ V
brimage.2 𝐵 ∈ V
Assertion
Ref Expression
brimage (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))

Proof of Theorem brimage
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brimage.1 . 2 𝐴 ∈ V
2 brimage.2 . 2 𝐵 ∈ V
3 df-image 34093 . 2 Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝑅) ⊗ V)))
4 brxp 5627 . . 3 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
51, 2, 4mpbir2an 707 . 2 𝐴(V × V)𝐵
6 vex 3426 . . . . 5 𝑥 ∈ V
7 vex 3426 . . . . 5 𝑦 ∈ V
86, 7brcnv 5780 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
98rexbii 3177 . . 3 (∃𝑦𝐴 𝑥𝑅𝑦 ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
106, 1coep 33625 . . 3 (𝑥( E ∘ 𝑅)𝐴 ↔ ∃𝑦𝐴 𝑥𝑅𝑦)
116elima 5963 . . 3 (𝑥 ∈ (𝑅𝐴) ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
129, 10, 113bitr4ri 303 . 2 (𝑥 ∈ (𝑅𝐴) ↔ 𝑥( E ∘ 𝑅)𝐴)
131, 2, 3, 5, 12brtxpsd3 34125 1 (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422   class class class wbr 5070   E cep 5485   × cxp 5578  ccnv 5579  cima 5583  ccom 5584  Imagecimage 34069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-symdif 4173  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-image 34093
This theorem is referenced by:  brimageg  34156  funimage  34157  fnimage  34158  imageval  34159  brdomain  34162  brrange  34163  brimg  34166  funpartlem  34171  imagesset  34182
  Copyright terms: Public domain W3C validator