Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brimage | Structured version Visualization version GIF version |
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
brimage.1 | ⊢ 𝐴 ∈ V |
brimage.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brimage | ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brimage.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | brimage.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | df-image 34166 | . 2 ⊢ Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ ◡𝑅) ⊗ V))) | |
4 | brxp 5636 | . . 3 ⊢ (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
5 | 1, 2, 4 | mpbir2an 708 | . 2 ⊢ 𝐴(V × V)𝐵 |
6 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | vex 3436 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | brcnv 5791 | . . . 4 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
9 | 8 | rexbii 3181 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
10 | 6, 1 | coep 33719 | . . 3 ⊢ (𝑥( E ∘ ◡𝑅)𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥◡𝑅𝑦) |
11 | 6 | elima 5974 | . . 3 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦𝑅𝑥) |
12 | 9, 10, 11 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ (𝑅 “ 𝐴) ↔ 𝑥( E ∘ ◡𝑅)𝐴) |
13 | 1, 2, 3, 5, 12 | brtxpsd3 34198 | 1 ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 class class class wbr 5074 E cep 5494 × cxp 5587 ◡ccnv 5588 “ cima 5592 ∘ ccom 5593 Imagecimage 34142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-symdif 4176 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-1st 7831 df-2nd 7832 df-txp 34156 df-image 34166 |
This theorem is referenced by: brimageg 34229 funimage 34230 fnimage 34231 imageval 34232 brdomain 34235 brrange 34236 brimg 34239 funpartlem 34244 imagesset 34255 |
Copyright terms: Public domain | W3C validator |