Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brimage Structured version   Visualization version   GIF version

Theorem brimage 35887
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brimage.1 𝐴 ∈ V
brimage.2 𝐵 ∈ V
Assertion
Ref Expression
brimage (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))

Proof of Theorem brimage
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brimage.1 . 2 𝐴 ∈ V
2 brimage.2 . 2 𝐵 ∈ V
3 df-image 35825 . 2 Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝑅) ⊗ V)))
4 brxp 5680 . . 3 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
51, 2, 4mpbir2an 711 . 2 𝐴(V × V)𝐵
6 vex 3448 . . . . 5 𝑥 ∈ V
7 vex 3448 . . . . 5 𝑦 ∈ V
86, 7brcnv 5836 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
98rexbii 3076 . . 3 (∃𝑦𝐴 𝑥𝑅𝑦 ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
106, 1coep 35712 . . 3 (𝑥( E ∘ 𝑅)𝐴 ↔ ∃𝑦𝐴 𝑥𝑅𝑦)
116elima 6025 . . 3 (𝑥 ∈ (𝑅𝐴) ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
129, 10, 113bitr4ri 304 . 2 (𝑥 ∈ (𝑅𝐴) ↔ 𝑥( E ∘ 𝑅)𝐴)
131, 2, 3, 5, 12brtxpsd3 35857 1 (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444   class class class wbr 5102   E cep 5530   × cxp 5629  ccnv 5630  cima 5634  ccom 5635  Imagecimage 35801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-symdif 4212  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-txp 35815  df-image 35825
This theorem is referenced by:  brimageg  35888  funimage  35889  fnimage  35890  imageval  35891  brdomain  35894  brrange  35895  brimg  35898  funpartlem  35903  imagesset  35914
  Copyright terms: Public domain W3C validator