Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brimage Structured version   Visualization version   GIF version

Theorem brimage 33965
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brimage.1 𝐴 ∈ V
brimage.2 𝐵 ∈ V
Assertion
Ref Expression
brimage (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))

Proof of Theorem brimage
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brimage.1 . 2 𝐴 ∈ V
2 brimage.2 . 2 𝐵 ∈ V
3 df-image 33903 . 2 Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝑅) ⊗ V)))
4 brxp 5598 . . 3 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
51, 2, 4mpbir2an 711 . 2 𝐴(V × V)𝐵
6 vex 3412 . . . . 5 𝑥 ∈ V
7 vex 3412 . . . . 5 𝑦 ∈ V
86, 7brcnv 5751 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
98rexbii 3170 . . 3 (∃𝑦𝐴 𝑥𝑅𝑦 ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
106, 1coep 33437 . . 3 (𝑥( E ∘ 𝑅)𝐴 ↔ ∃𝑦𝐴 𝑥𝑅𝑦)
116elima 5934 . . 3 (𝑥 ∈ (𝑅𝐴) ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
129, 10, 113bitr4ri 307 . 2 (𝑥 ∈ (𝑅𝐴) ↔ 𝑥( E ∘ 𝑅)𝐴)
131, 2, 3, 5, 12brtxpsd3 33935 1 (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wcel 2110  wrex 3062  Vcvv 3408   class class class wbr 5053   E cep 5459   × cxp 5549  ccnv 5550  cima 5554  ccom 5555  Imagecimage 33879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-symdif 4157  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-eprel 5460  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fo 6386  df-fv 6388  df-1st 7761  df-2nd 7762  df-txp 33893  df-image 33903
This theorem is referenced by:  brimageg  33966  funimage  33967  fnimage  33968  imageval  33969  brdomain  33972  brrange  33973  brimg  33976  funpartlem  33981  imagesset  33992
  Copyright terms: Public domain W3C validator