Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brimage Structured version   Visualization version   GIF version

Theorem brimage 35921
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brimage.1 𝐴 ∈ V
brimage.2 𝐵 ∈ V
Assertion
Ref Expression
brimage (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))

Proof of Theorem brimage
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brimage.1 . 2 𝐴 ∈ V
2 brimage.2 . 2 𝐵 ∈ V
3 df-image 35859 . 2 Image𝑅 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝑅) ⊗ V)))
4 brxp 5690 . . 3 (𝐴(V × V)𝐵 ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
51, 2, 4mpbir2an 711 . 2 𝐴(V × V)𝐵
6 vex 3454 . . . . 5 𝑥 ∈ V
7 vex 3454 . . . . 5 𝑦 ∈ V
86, 7brcnv 5849 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
98rexbii 3077 . . 3 (∃𝑦𝐴 𝑥𝑅𝑦 ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
106, 1coep 35746 . . 3 (𝑥( E ∘ 𝑅)𝐴 ↔ ∃𝑦𝐴 𝑥𝑅𝑦)
116elima 6039 . . 3 (𝑥 ∈ (𝑅𝐴) ↔ ∃𝑦𝐴 𝑦𝑅𝑥)
129, 10, 113bitr4ri 304 . 2 (𝑥 ∈ (𝑅𝐴) ↔ 𝑥( E ∘ 𝑅)𝐴)
131, 2, 3, 5, 12brtxpsd3 35891 1 (𝐴Image𝑅𝐵𝐵 = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450   class class class wbr 5110   E cep 5540   × cxp 5639  ccnv 5640  cima 5644  ccom 5645  Imagecimage 35835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-symdif 4219  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-txp 35849  df-image 35859
This theorem is referenced by:  brimageg  35922  funimage  35923  fnimage  35924  imageval  35925  brdomain  35928  brrange  35929  brimg  35932  funpartlem  35937  imagesset  35948
  Copyright terms: Public domain W3C validator