Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sseqtrrid | Structured version Visualization version GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
sseqtrrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
sseqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
Ref | Expression |
---|---|
sseqtrrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrid.1 | . . 3 ⊢ 𝐵 ⊆ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
3 | sseqtrrid.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
4 | 2, 3 | sseqtrrd 3958 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Copyright terms: Public domain | W3C validator |