| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sseqtrrid | Structured version Visualization version GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sseqtrrid.1 | ⊢ 𝐵 ⊆ 𝐴 |
| sseqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Ref | Expression |
|---|---|
| sseqtrrid | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrid.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
| 2 | sseqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 3 | 2 | eqcomd 2740 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
| 4 | 1, 3 | sseqtrid 4008 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Copyright terms: Public domain | W3C validator |