MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem1 Structured version   Visualization version   GIF version

Theorem opsrtoslem1 22097
Description: Lemma for opsrtos 22099. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐵 = (Base‘𝑆)
opsrtoslem.q < = (lt‘𝑅)
opsrtoslem.c 𝐶 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrtoslem.ps (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
opsrtoslem.l = (le‘𝑂)
Assertion
Ref Expression
opsrtoslem1 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑤,𝑦,𝑧,𝐶   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,)   𝐵(𝑧,𝑤,)   𝐶()   𝐷()   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < ()   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrtoslem1
StepHypRef Expression
1 opsrtoslem.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrso.o . . 3 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 opsrtoslem.b . . 3 𝐵 = (Base‘𝑆)
4 opsrtoslem.q . . 3 < = (lt‘𝑅)
5 opsrtoslem.c . . 3 𝐶 = (𝑇 <bag 𝐼)
6 opsrtoslem.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 opsrtoslem.l . . 3 = (le‘𝑂)
8 opsrso.t . . 3 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
91, 2, 3, 4, 5, 6, 7, 8opsrle 22083 . 2 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
10 unopab 5230 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} ∪ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))}
11 inopab 5842 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)}) = {⟨𝑥, 𝑦⟩ ∣ (𝜓 ∧ (𝑥𝐵𝑦𝐵))}
12 df-xp 5695 . . . . . 6 (𝐵 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)}
1312ineq2i 4225 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)})
14 vex 3482 . . . . . . . . 9 𝑥 ∈ V
15 vex 3482 . . . . . . . . 9 𝑦 ∈ V
1614, 15prss 4825 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
1716anbi1i 624 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝜓) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝜓))
18 ancom 460 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝜓) ↔ (𝜓 ∧ (𝑥𝐵𝑦𝐵)))
1917, 18bitr3i 277 . . . . . 6 (({𝑥, 𝑦} ⊆ 𝐵𝜓) ↔ (𝜓 ∧ (𝑥𝐵𝑦𝐵)))
2019opabbii 5215 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} = {⟨𝑥, 𝑦⟩ ∣ (𝜓 ∧ (𝑥𝐵𝑦𝐵))}
2111, 13, 203eqtr4i 2773 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)}
22 opabresid 6070 . . . . 5 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)}
23 equcom 2015 . . . . . . . . 9 (𝑥 = 𝑦𝑦 = 𝑥)
2423anbi2i 623 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝑦) ↔ (𝑥𝐵𝑦 = 𝑥))
25 eleq1w 2822 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
2625biimpac 478 . . . . . . . . 9 ((𝑥𝐵𝑥 = 𝑦) → 𝑦𝐵)
2726pm4.71i 559 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝑦) ↔ ((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵))
2824, 27bitr3i 277 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) ↔ ((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵))
29 an32 646 . . . . . . 7 (((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = 𝑦))
3016anbi1i 624 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))
3128, 29, 303bitri 297 . . . . . 6 ((𝑥𝐵𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))
3231opabbii 5215 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}
3322, 32eqtri 2763 . . . 4 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}
3421, 33uneq12i 4176 . . 3 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) = ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} ∪ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)})
35 opsrtoslem.ps . . . . . . 7 (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
3635orbi1i 913 . . . . . 6 ((𝜓𝑥 = 𝑦) ↔ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))
3736anbi2i 623 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)))
38 andi 1009 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)))
3937, 38bitr3i 277 . . . 4 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)))
4039opabbii 5215 . . 3 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))}
4110, 34, 403eqtr4ri 2774 . 2 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))
429, 41eqtrdi 2791 1 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  cun 3961  cin 3962  wss 3963  {cpr 4633   class class class wbr 5148  {copab 5210   I cid 5582   We wwe 5640   × cxp 5687  ccnv 5688  cres 5691  cima 5692  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  cn 12264  0cn0 12524  Basecbs 17245  lecple 17305  ltcplt 18366  Tosetctos 18474   mPwSer cmps 21942   <bag cltb 21945   ordPwSer copws 21946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ple 17318  df-psr 21947  df-opsr 21951
This theorem is referenced by:  opsrtoslem2  22098
  Copyright terms: Public domain W3C validator