MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem1 Structured version   Visualization version   GIF version

Theorem opsrtoslem1 19845
Description: Lemma for opsrtos 19847. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐵 = (Base‘𝑆)
opsrtoslem.q < = (lt‘𝑅)
opsrtoslem.c 𝐶 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrtoslem.ps (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
opsrtoslem.l = (le‘𝑂)
Assertion
Ref Expression
opsrtoslem1 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑤,𝑦,𝑧,𝐶   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,)   𝐵(𝑧,𝑤,)   𝐶()   𝐷()   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < ()   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrtoslem1
StepHypRef Expression
1 opsrtoslem.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrso.o . . 3 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 opsrtoslem.b . . 3 𝐵 = (Base‘𝑆)
4 opsrtoslem.q . . 3 < = (lt‘𝑅)
5 opsrtoslem.c . . 3 𝐶 = (𝑇 <bag 𝐼)
6 opsrtoslem.d . . 3 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 opsrtoslem.l . . 3 = (le‘𝑂)
8 opsrso.t . . 3 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
91, 2, 3, 4, 5, 6, 7, 8opsrle 19837 . 2 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
10 unopab 4952 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} ∪ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))}
11 inopab 5486 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)}) = {⟨𝑥, 𝑦⟩ ∣ (𝜓 ∧ (𝑥𝐵𝑦𝐵))}
12 df-xp 5349 . . . . . 6 (𝐵 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)}
1312ineq2i 4039 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)})
14 vex 3418 . . . . . . . . 9 𝑥 ∈ V
15 vex 3418 . . . . . . . . 9 𝑦 ∈ V
1614, 15prss 4570 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
1716anbi1i 619 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝜓) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝜓))
18 ancom 454 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝜓) ↔ (𝜓 ∧ (𝑥𝐵𝑦𝐵)))
1917, 18bitr3i 269 . . . . . 6 (({𝑥, 𝑦} ⊆ 𝐵𝜓) ↔ (𝜓 ∧ (𝑥𝐵𝑦𝐵)))
2019opabbii 4941 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} = {⟨𝑥, 𝑦⟩ ∣ (𝜓 ∧ (𝑥𝐵𝑦𝐵))}
2111, 13, 203eqtr4i 2860 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)}
22 opabresid 5699 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = ( I ↾ 𝐵)
23 equcom 2124 . . . . . . . . 9 (𝑥 = 𝑦𝑦 = 𝑥)
2423anbi2i 618 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝑦) ↔ (𝑥𝐵𝑦 = 𝑥))
25 eleq1w 2890 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
2625biimpac 472 . . . . . . . . 9 ((𝑥𝐵𝑥 = 𝑦) → 𝑦𝐵)
2726pm4.71i 557 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝑦) ↔ ((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵))
2824, 27bitr3i 269 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) ↔ ((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵))
29 an32 638 . . . . . . 7 (((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = 𝑦))
3016anbi1i 619 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))
3128, 29, 303bitri 289 . . . . . 6 ((𝑥𝐵𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))
3231opabbii 4941 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}
3322, 32eqtr3i 2852 . . . 4 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}
3421, 33uneq12i 3993 . . 3 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) = ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} ∪ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)})
35 opsrtoslem.ps . . . . . . 7 (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
3635orbi1i 944 . . . . . 6 ((𝜓𝑥 = 𝑦) ↔ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))
3736anbi2i 618 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)))
38 andi 1037 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)))
3937, 38bitr3i 269 . . . 4 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)))
4039opabbii 4941 . . 3 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))}
4110, 34, 403eqtr4ri 2861 . 2 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))
429, 41syl6eq 2878 1 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 880   = wceq 1658  wcel 2166  wral 3118  wrex 3119  {crab 3122  cun 3797  cin 3798  wss 3799  {cpr 4400   class class class wbr 4874  {copab 4936   I cid 5250   We wwe 5301   × cxp 5341  ccnv 5342  cres 5345  cima 5346  cfv 6124  (class class class)co 6906  𝑚 cmap 8123  Fincfn 8223  cn 11351  0cn0 11619  Basecbs 16223  lecple 16313  ltcplt 17295  Tosetctos 17387   mPwSer cmps 19713   <bag cltb 19716   ordPwSer copws 19717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-ltxr 10397  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-dec 11823  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ple 16326  df-psr 19718  df-opsr 19722
This theorem is referenced by:  opsrtoslem2  19846
  Copyright terms: Public domain W3C validator