Proof of Theorem opsrtoslem1
Step | Hyp | Ref
| Expression |
1 | | opsrtoslem.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | opsrso.o |
. . 3
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
3 | | opsrtoslem.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
4 | | opsrtoslem.q |
. . 3
⊢ < =
(lt‘𝑅) |
5 | | opsrtoslem.c |
. . 3
⊢ 𝐶 = (𝑇 <bag 𝐼) |
6 | | opsrtoslem.d |
. . 3
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
7 | | opsrtoslem.l |
. . 3
⊢ ≤ =
(le‘𝑂) |
8 | | opsrso.t |
. . 3
⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | opsrle 21229 |
. 2
⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
10 | | unopab 5160 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)} ∪ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)}) = {〈𝑥, 𝑦〉 ∣ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦))} |
11 | | inopab 5736 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)}) = {〈𝑥, 𝑦〉 ∣ (𝜓 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))} |
12 | | df-xp 5594 |
. . . . . 6
⊢ (𝐵 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)} |
13 | 12 | ineq2i 4148 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) = ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)}) |
14 | | vex 3434 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
15 | | vex 3434 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
16 | 14, 15 | prss 4758 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
17 | 16 | anbi1i 623 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)) |
18 | | ancom 460 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) ↔ (𝜓 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
19 | 17, 18 | bitr3i 276 |
. . . . . 6
⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ↔ (𝜓 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
20 | 19 | opabbii 5145 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ (𝜓 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))} |
21 | 11, 13, 20 | 3eqtr4i 2777 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)} |
22 | | opabresid 5954 |
. . . . 5
⊢ ( I
↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} |
23 | | equcom 2024 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
24 | 23 | anbi2i 622 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)) |
25 | | eleq1w 2822 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
26 | 25 | biimpac 478 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) → 𝑦 ∈ 𝐵) |
27 | 26 | pm4.71i 559 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ∧ 𝑦 ∈ 𝐵)) |
28 | 24, 27 | bitr3i 276 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ∧ 𝑦 ∈ 𝐵)) |
29 | | an32 642 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ∧ 𝑦 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = 𝑦)) |
30 | 16 | anbi1i 623 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)) |
31 | 28, 29, 30 | 3bitri 296 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)) |
32 | 31 | opabbii 5145 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)} |
33 | 22, 32 | eqtri 2767 |
. . . 4
⊢ ( I
↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)} |
34 | 21, 33 | uneq12i 4099 |
. . 3
⊢
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) = ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)} ∪ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)}) |
35 | | opsrtoslem.ps |
. . . . . . 7
⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
36 | 35 | orbi1i 910 |
. . . . . 6
⊢ ((𝜓 ∨ 𝑥 = 𝑦) ↔ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)) |
37 | 36 | anbi2i 622 |
. . . . 5
⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓 ∨ 𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))) |
38 | | andi 1004 |
. . . . 5
⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓 ∨ 𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦))) |
39 | 37, 38 | bitr3i 276 |
. . . 4
⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦))) |
40 | 39 | opabbii 5145 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦))} |
41 | 10, 34, 40 | 3eqtr4ri 2778 |
. 2
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) |
42 | 9, 41 | eqtrdi 2795 |
1
⊢ (𝜑 → ≤ = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))) |