Proof of Theorem opsrtoslem1
| Step | Hyp | Ref
| Expression |
| 1 | | opsrtoslem.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | opsrso.o |
. . 3
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
| 3 | | opsrtoslem.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
| 4 | | opsrtoslem.q |
. . 3
⊢ < =
(lt‘𝑅) |
| 5 | | opsrtoslem.c |
. . 3
⊢ 𝐶 = (𝑇 <bag 𝐼) |
| 6 | | opsrtoslem.d |
. . 3
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 7 | | opsrtoslem.l |
. . 3
⊢ ≤ =
(le‘𝑂) |
| 8 | | opsrso.t |
. . 3
⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | opsrle 22010 |
. 2
⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
| 10 | | unopab 5205 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)} ∪ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)}) = {〈𝑥, 𝑦〉 ∣ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦))} |
| 11 | | inopab 5813 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)}) = {〈𝑥, 𝑦〉 ∣ (𝜓 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))} |
| 12 | | df-xp 5665 |
. . . . . 6
⊢ (𝐵 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)} |
| 13 | 12 | ineq2i 4197 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) = ({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)}) |
| 14 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 15 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 16 | 14, 15 | prss 4801 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
| 17 | 16 | anbi1i 624 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)) |
| 18 | | ancom 460 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) ↔ (𝜓 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 19 | 17, 18 | bitr3i 277 |
. . . . . 6
⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ↔ (𝜓 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 20 | 19 | opabbii 5191 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)} = {〈𝑥, 𝑦〉 ∣ (𝜓 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))} |
| 21 | 11, 13, 20 | 3eqtr4i 2769 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)} |
| 22 | | opabresid 6042 |
. . . . 5
⊢ ( I
↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} |
| 23 | | equcom 2018 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) |
| 24 | 23 | anbi2i 623 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)) |
| 25 | | eleq1w 2818 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 26 | 25 | biimpac 478 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) → 𝑦 ∈ 𝐵) |
| 27 | 26 | pm4.71i 559 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ∧ 𝑦 ∈ 𝐵)) |
| 28 | 24, 27 | bitr3i 277 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ∧ 𝑦 ∈ 𝐵)) |
| 29 | | an32 646 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑦) ∧ 𝑦 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = 𝑦)) |
| 30 | 16 | anbi1i 624 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)) |
| 31 | 28, 29, 30 | 3bitri 297 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)) |
| 32 | 31 | opabbii 5191 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝑥)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)} |
| 33 | 22, 32 | eqtri 2759 |
. . . 4
⊢ ( I
↾ 𝐵) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)} |
| 34 | 21, 33 | uneq12i 4146 |
. . 3
⊢
(({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) = ({〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓)} ∪ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦)}) |
| 35 | | opsrtoslem.ps |
. . . . . . 7
⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 36 | 35 | orbi1i 913 |
. . . . . 6
⊢ ((𝜓 ∨ 𝑥 = 𝑦) ↔ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)) |
| 37 | 36 | anbi2i 623 |
. . . . 5
⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓 ∨ 𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))) |
| 38 | | andi 1009 |
. . . . 5
⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓 ∨ 𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦))) |
| 39 | 37, 38 | bitr3i 277 |
. . . 4
⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦))) |
| 40 | 39 | opabbii 5191 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ (({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵 ∧ 𝑥 = 𝑦))} |
| 41 | 10, 34, 40 | 3eqtr4ri 2770 |
. 2
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) |
| 42 | 9, 41 | eqtrdi 2787 |
1
⊢ (𝜑 → ≤ = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))) |