MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcxpccl Structured version   Visualization version   GIF version

Theorem catcxpccl 17924
Description: The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.)
Hypotheses
Ref Expression
catcxpccl.c 𝐶 = (CatCat‘𝑈)
catcxpccl.b 𝐵 = (Base‘𝐶)
catcxpccl.o 𝑇 = (𝑋 ×c 𝑌)
catcxpccl.u (𝜑𝑈 ∈ WUni)
catcxpccl.1 (𝜑 → ω ∈ 𝑈)
catcxpccl.x (𝜑𝑋𝐵)
catcxpccl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catcxpccl (𝜑𝑇𝐵)

Proof of Theorem catcxpccl
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcxpccl.o . . . . 5 𝑇 = (𝑋 ×c 𝑌)
2 eqid 2738 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
3 eqid 2738 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2738 . . . . 5 (Hom ‘𝑋) = (Hom ‘𝑋)
5 eqid 2738 . . . . 5 (Hom ‘𝑌) = (Hom ‘𝑌)
6 eqid 2738 . . . . 5 (comp‘𝑋) = (comp‘𝑋)
7 eqid 2738 . . . . 5 (comp‘𝑌) = (comp‘𝑌)
8 catcxpccl.x . . . . 5 (𝜑𝑋𝐵)
9 catcxpccl.y . . . . 5 (𝜑𝑌𝐵)
10 eqidd 2739 . . . . 5 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) = ((Base‘𝑋) × (Base‘𝑌)))
111, 2, 3xpcbas 17895 . . . . . . 7 ((Base‘𝑋) × (Base‘𝑌)) = (Base‘𝑇)
12 eqid 2738 . . . . . . 7 (Hom ‘𝑇) = (Hom ‘𝑇)
131, 11, 4, 5, 12xpchomfval 17896 . . . . . 6 (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
1413a1i 11 . . . . 5 (𝜑 → (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))))
15 eqidd 2739 . . . . 5 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15xpcval 17894 . . . 4 (𝜑𝑇 = {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩})
17 catcxpccl.u . . . . 5 (𝜑𝑈 ∈ WUni)
18 baseid 16915 . . . . . . 7 Base = Slot (Base‘ndx)
19 catcxpccl.1 . . . . . . . 8 (𝜑 → ω ∈ 𝑈)
2017, 19wunndx 16896 . . . . . . 7 (𝜑 → ndx ∈ 𝑈)
2118, 17, 20wunstr 16889 . . . . . 6 (𝜑 → (Base‘ndx) ∈ 𝑈)
22 catcxpccl.c . . . . . . . 8 𝐶 = (CatCat‘𝑈)
23 catcxpccl.b . . . . . . . 8 𝐵 = (Base‘𝐶)
2422, 23, 17, 8catcbaselcl 17829 . . . . . . 7 (𝜑 → (Base‘𝑋) ∈ 𝑈)
2522, 23, 17, 9catcbaselcl 17829 . . . . . . 7 (𝜑 → (Base‘𝑌) ∈ 𝑈)
2617, 24, 25wunxp 10480 . . . . . 6 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) ∈ 𝑈)
2717, 21, 26wunop 10478 . . . . 5 (𝜑 → ⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩ ∈ 𝑈)
28 homid 17122 . . . . . . 7 Hom = Slot (Hom ‘ndx)
2928, 17, 20wunstr 16889 . . . . . 6 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
3017, 26, 26wunxp 10480 . . . . . . . 8 (𝜑 → (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
3122, 23, 17, 8catchomcl 17830 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑋) ∈ 𝑈)
3217, 31wunrn 10485 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑋) ∈ 𝑈)
3317, 32wununi 10462 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑋) ∈ 𝑈)
3422, 23, 17, 9catchomcl 17830 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑌) ∈ 𝑈)
3517, 34wunrn 10485 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑌) ∈ 𝑈)
3617, 35wununi 10462 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑌) ∈ 𝑈)
3717, 33, 36wunxp 10480 . . . . . . . . 9 (𝜑 → ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
3817, 37wunpw 10463 . . . . . . . 8 (𝜑 → 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
39 ovssunirn 7311 . . . . . . . . . . . . 13 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋)
40 ovssunirn 7311 . . . . . . . . . . . . 13 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)
41 xpss12 5604 . . . . . . . . . . . . 13 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋) ∧ ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)) → (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
4239, 40, 41mp2an 689 . . . . . . . . . . . 12 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
43 ovex 7308 . . . . . . . . . . . . . 14 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ∈ V
44 ovex 7308 . . . . . . . . . . . . . 14 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ∈ V
4543, 44xpex 7603 . . . . . . . . . . . . 13 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ V
4645elpw 4537 . . . . . . . . . . . 12 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
4742, 46mpbir 230 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
4847rgen2w 3077 . . . . . . . . . 10 𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
49 eqid 2738 . . . . . . . . . . 11 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
5049fmpo 7908 . . . . . . . . . 10 (∀𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5148, 50mpbi 229 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
5251a1i 11 . . . . . . . 8 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5317, 30, 38, 52wunf 10483 . . . . . . 7 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) ∈ 𝑈)
5413, 53eqeltrid 2843 . . . . . 6 (𝜑 → (Hom ‘𝑇) ∈ 𝑈)
5517, 29, 54wunop 10478 . . . . 5 (𝜑 → ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩ ∈ 𝑈)
56 ccoid 17124 . . . . . . 7 comp = Slot (comp‘ndx)
5756, 17, 20wunstr 16889 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
5817, 30, 26wunxp 10480 . . . . . . 7 (𝜑 → ((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
5922, 23, 17, 8catcccocl 17831 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑋) ∈ 𝑈)
6017, 59wunrn 10485 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑋) ∈ 𝑈)
6117, 60wununi 10462 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑋) ∈ 𝑈)
6217, 61wunrn 10485 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑋) ∈ 𝑈)
6317, 62wununi 10462 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑋) ∈ 𝑈)
6417, 63wunpw 10463 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑋) ∈ 𝑈)
6522, 23, 17, 9catcccocl 17831 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑌) ∈ 𝑈)
6617, 65wunrn 10485 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑌) ∈ 𝑈)
6717, 66wununi 10462 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑌) ∈ 𝑈)
6817, 67wunrn 10485 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑌) ∈ 𝑈)
6917, 68wununi 10462 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑌) ∈ 𝑈)
7017, 69wunpw 10463 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑌) ∈ 𝑈)
7117, 64, 70wunxp 10480 . . . . . . . 8 (𝜑 → (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ 𝑈)
7217, 54wunrn 10485 . . . . . . . . . 10 (𝜑 → ran (Hom ‘𝑇) ∈ 𝑈)
7317, 72wununi 10462 . . . . . . . . 9 (𝜑 ran (Hom ‘𝑇) ∈ 𝑈)
7417, 73, 73wunxp 10480 . . . . . . . 8 (𝜑 → ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ 𝑈)
7517, 71, 74wunpm 10481 . . . . . . 7 (𝜑 → ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ∈ 𝑈)
76 fvex 6787 . . . . . . . . . . . . . . . . 17 (comp‘𝑋) ∈ V
7776rnex 7759 . . . . . . . . . . . . . . . 16 ran (comp‘𝑋) ∈ V
7877uniex 7594 . . . . . . . . . . . . . . 15 ran (comp‘𝑋) ∈ V
7978rnex 7759 . . . . . . . . . . . . . 14 ran ran (comp‘𝑋) ∈ V
8079uniex 7594 . . . . . . . . . . . . 13 ran ran (comp‘𝑋) ∈ V
8180pwex 5303 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑋) ∈ V
82 fvex 6787 . . . . . . . . . . . . . . . . 17 (comp‘𝑌) ∈ V
8382rnex 7759 . . . . . . . . . . . . . . . 16 ran (comp‘𝑌) ∈ V
8483uniex 7594 . . . . . . . . . . . . . . 15 ran (comp‘𝑌) ∈ V
8584rnex 7759 . . . . . . . . . . . . . 14 ran ran (comp‘𝑌) ∈ V
8685uniex 7594 . . . . . . . . . . . . 13 ran ran (comp‘𝑌) ∈ V
8786pwex 5303 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑌) ∈ V
8881, 87xpex 7603 . . . . . . . . . . 11 (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V
89 fvex 6787 . . . . . . . . . . . . . 14 (Hom ‘𝑇) ∈ V
9089rnex 7759 . . . . . . . . . . . . 13 ran (Hom ‘𝑇) ∈ V
9190uniex 7594 . . . . . . . . . . . 12 ran (Hom ‘𝑇) ∈ V
9291, 91xpex 7603 . . . . . . . . . . 11 ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V
93 ovssunirn 7311 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))
94 ovssunirn 7311 . . . . . . . . . . . . . . . . 17 (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋)
95 rnss 5848 . . . . . . . . . . . . . . . . 17 ((⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
96 uniss 4847 . . . . . . . . . . . . . . . . 17 (ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
9794, 95, 96mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋)
9893, 97sstri 3930 . . . . . . . . . . . . . . 15 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋)
99 ovex 7308 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ V
10099elpw 4537 . . . . . . . . . . . . . . 15 (((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ↔ ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋))
10198, 100mpbir 230 . . . . . . . . . . . . . 14 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋)
102 ovssunirn 7311 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))
103 ovssunirn 7311 . . . . . . . . . . . . . . . . 17 (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌)
104 rnss 5848 . . . . . . . . . . . . . . . . 17 ((⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
105 uniss 4847 . . . . . . . . . . . . . . . . 17 (ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
106103, 104, 105mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌)
107102, 106sstri 3930 . . . . . . . . . . . . . . 15 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌)
108 ovex 7308 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ V
109108elpw 4537 . . . . . . . . . . . . . . 15 (((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌) ↔ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌))
110107, 109mpbir 230 . . . . . . . . . . . . . 14 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)
111 opelxpi 5626 . . . . . . . . . . . . . 14 ((((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ∧ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
112101, 110, 111mp2an 689 . . . . . . . . . . . . 13 ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
113112rgen2w 3077 . . . . . . . . . . . 12 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
114 eqid 2738 . . . . . . . . . . . . 13 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)
115114fmpo 7908 . . . . . . . . . . . 12 (∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↔ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
116113, 115mpbi 229 . . . . . . . . . . 11 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
117 ovssunirn 7311 . . . . . . . . . . . 12 ((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇)
118 fvssunirn 6803 . . . . . . . . . . . 12 ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)
119 xpss12 5604 . . . . . . . . . . . 12 ((((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇) ∧ ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)) → (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
120117, 118, 119mp2an 689 . . . . . . . . . . 11 (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))
121 elpm2r 8633 . . . . . . . . . . 11 ((((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V ∧ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V) ∧ ((𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∧ (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))) → (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
12288, 92, 116, 120, 121mp4an 690 . . . . . . . . . 10 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
123122rgen2w 3077 . . . . . . . . 9 𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
124 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))
125124fmpo 7908 . . . . . . . . 9 (∀𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ↔ (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
126123, 125mpbi 229 . . . . . . . 8 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
127126a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
12817, 58, 75, 127wunf 10483 . . . . . 6 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) ∈ 𝑈)
12917, 57, 128wunop 10478 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩ ∈ 𝑈)
13017, 27, 55, 129wuntp 10467 . . . 4 (𝜑 → {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩} ∈ 𝑈)
13116, 130eqeltrd 2839 . . 3 (𝜑𝑇𝑈)
13222, 23, 17catcbas 17816 . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Cat))
1338, 132eleqtrd 2841 . . . . 5 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
134133elin2d 4133 . . . 4 (𝜑𝑋 ∈ Cat)
1359, 132eleqtrd 2841 . . . . 5 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
136135elin2d 4133 . . . 4 (𝜑𝑌 ∈ Cat)
1371, 134, 136xpccat 17907 . . 3 (𝜑𝑇 ∈ Cat)
138131, 137elind 4128 . 2 (𝜑𝑇 ∈ (𝑈 ∩ Cat))
139138, 132eleqtrrd 2842 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533  {ctp 4565  cop 4567   cuni 4839   × cxp 5587  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712  1st c1st 7829  2nd c2nd 7830  pm cpm 8616  WUnicwun 10456  ndxcnx 16894  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  CatCatccatc 17813   ×c cxpc 17885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-wun 10458  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-plp 10739  df-ltp 10741  df-enr 10811  df-nr 10812  df-c 10877  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-hom 16986  df-cco 16987  df-cat 17377  df-cid 17378  df-catc 17814  df-xpc 17889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator