MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcxpccl Structured version   Visualization version   GIF version

Theorem catcxpccl 18095
Description: The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.)
Hypotheses
Ref Expression
catcxpccl.c 𝐶 = (CatCat‘𝑈)
catcxpccl.b 𝐵 = (Base‘𝐶)
catcxpccl.o 𝑇 = (𝑋 ×c 𝑌)
catcxpccl.u (𝜑𝑈 ∈ WUni)
catcxpccl.1 (𝜑 → ω ∈ 𝑈)
catcxpccl.x (𝜑𝑋𝐵)
catcxpccl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catcxpccl (𝜑𝑇𝐵)

Proof of Theorem catcxpccl
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcxpccl.o . . . . 5 𝑇 = (𝑋 ×c 𝑌)
2 eqid 2736 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
3 eqid 2736 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2736 . . . . 5 (Hom ‘𝑋) = (Hom ‘𝑋)
5 eqid 2736 . . . . 5 (Hom ‘𝑌) = (Hom ‘𝑌)
6 eqid 2736 . . . . 5 (comp‘𝑋) = (comp‘𝑋)
7 eqid 2736 . . . . 5 (comp‘𝑌) = (comp‘𝑌)
8 catcxpccl.x . . . . 5 (𝜑𝑋𝐵)
9 catcxpccl.y . . . . 5 (𝜑𝑌𝐵)
10 eqidd 2737 . . . . 5 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) = ((Base‘𝑋) × (Base‘𝑌)))
111, 2, 3xpcbas 18066 . . . . . . 7 ((Base‘𝑋) × (Base‘𝑌)) = (Base‘𝑇)
12 eqid 2736 . . . . . . 7 (Hom ‘𝑇) = (Hom ‘𝑇)
131, 11, 4, 5, 12xpchomfval 18067 . . . . . 6 (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
1413a1i 11 . . . . 5 (𝜑 → (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))))
15 eqidd 2737 . . . . 5 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15xpcval 18065 . . . 4 (𝜑𝑇 = {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩})
17 catcxpccl.u . . . . 5 (𝜑𝑈 ∈ WUni)
18 baseid 17086 . . . . . . 7 Base = Slot (Base‘ndx)
19 catcxpccl.1 . . . . . . . 8 (𝜑 → ω ∈ 𝑈)
2017, 19wunndx 17067 . . . . . . 7 (𝜑 → ndx ∈ 𝑈)
2118, 17, 20wunstr 17060 . . . . . 6 (𝜑 → (Base‘ndx) ∈ 𝑈)
22 catcxpccl.c . . . . . . . 8 𝐶 = (CatCat‘𝑈)
23 catcxpccl.b . . . . . . . 8 𝐵 = (Base‘𝐶)
2422, 23, 17, 8catcbaselcl 18000 . . . . . . 7 (𝜑 → (Base‘𝑋) ∈ 𝑈)
2522, 23, 17, 9catcbaselcl 18000 . . . . . . 7 (𝜑 → (Base‘𝑌) ∈ 𝑈)
2617, 24, 25wunxp 10660 . . . . . 6 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) ∈ 𝑈)
2717, 21, 26wunop 10658 . . . . 5 (𝜑 → ⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩ ∈ 𝑈)
28 homid 17293 . . . . . . 7 Hom = Slot (Hom ‘ndx)
2928, 17, 20wunstr 17060 . . . . . 6 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
3017, 26, 26wunxp 10660 . . . . . . . 8 (𝜑 → (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
3122, 23, 17, 8catchomcl 18001 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑋) ∈ 𝑈)
3217, 31wunrn 10665 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑋) ∈ 𝑈)
3317, 32wununi 10642 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑋) ∈ 𝑈)
3422, 23, 17, 9catchomcl 18001 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑌) ∈ 𝑈)
3517, 34wunrn 10665 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑌) ∈ 𝑈)
3617, 35wununi 10642 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑌) ∈ 𝑈)
3717, 33, 36wunxp 10660 . . . . . . . . 9 (𝜑 → ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
3817, 37wunpw 10643 . . . . . . . 8 (𝜑 → 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
39 ovssunirn 7393 . . . . . . . . . . . . 13 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋)
40 ovssunirn 7393 . . . . . . . . . . . . 13 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)
41 xpss12 5648 . . . . . . . . . . . . 13 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋) ∧ ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)) → (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
4239, 40, 41mp2an 690 . . . . . . . . . . . 12 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
43 ovex 7390 . . . . . . . . . . . . . 14 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ∈ V
44 ovex 7390 . . . . . . . . . . . . . 14 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ∈ V
4543, 44xpex 7687 . . . . . . . . . . . . 13 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ V
4645elpw 4564 . . . . . . . . . . . 12 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
4742, 46mpbir 230 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
4847rgen2w 3069 . . . . . . . . . 10 𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
49 eqid 2736 . . . . . . . . . . 11 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
5049fmpo 8000 . . . . . . . . . 10 (∀𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5148, 50mpbi 229 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
5251a1i 11 . . . . . . . 8 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5317, 30, 38, 52wunf 10663 . . . . . . 7 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) ∈ 𝑈)
5413, 53eqeltrid 2842 . . . . . 6 (𝜑 → (Hom ‘𝑇) ∈ 𝑈)
5517, 29, 54wunop 10658 . . . . 5 (𝜑 → ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩ ∈ 𝑈)
56 ccoid 17295 . . . . . . 7 comp = Slot (comp‘ndx)
5756, 17, 20wunstr 17060 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
5817, 30, 26wunxp 10660 . . . . . . 7 (𝜑 → ((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
5922, 23, 17, 8catcccocl 18002 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑋) ∈ 𝑈)
6017, 59wunrn 10665 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑋) ∈ 𝑈)
6117, 60wununi 10642 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑋) ∈ 𝑈)
6217, 61wunrn 10665 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑋) ∈ 𝑈)
6317, 62wununi 10642 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑋) ∈ 𝑈)
6417, 63wunpw 10643 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑋) ∈ 𝑈)
6522, 23, 17, 9catcccocl 18002 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑌) ∈ 𝑈)
6617, 65wunrn 10665 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑌) ∈ 𝑈)
6717, 66wununi 10642 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑌) ∈ 𝑈)
6817, 67wunrn 10665 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑌) ∈ 𝑈)
6917, 68wununi 10642 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑌) ∈ 𝑈)
7017, 69wunpw 10643 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑌) ∈ 𝑈)
7117, 64, 70wunxp 10660 . . . . . . . 8 (𝜑 → (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ 𝑈)
7217, 54wunrn 10665 . . . . . . . . . 10 (𝜑 → ran (Hom ‘𝑇) ∈ 𝑈)
7317, 72wununi 10642 . . . . . . . . 9 (𝜑 ran (Hom ‘𝑇) ∈ 𝑈)
7417, 73, 73wunxp 10660 . . . . . . . 8 (𝜑 → ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ 𝑈)
7517, 71, 74wunpm 10661 . . . . . . 7 (𝜑 → ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ∈ 𝑈)
76 fvex 6855 . . . . . . . . . . . . . . . . 17 (comp‘𝑋) ∈ V
7776rnex 7849 . . . . . . . . . . . . . . . 16 ran (comp‘𝑋) ∈ V
7877uniex 7678 . . . . . . . . . . . . . . 15 ran (comp‘𝑋) ∈ V
7978rnex 7849 . . . . . . . . . . . . . 14 ran ran (comp‘𝑋) ∈ V
8079uniex 7678 . . . . . . . . . . . . 13 ran ran (comp‘𝑋) ∈ V
8180pwex 5335 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑋) ∈ V
82 fvex 6855 . . . . . . . . . . . . . . . . 17 (comp‘𝑌) ∈ V
8382rnex 7849 . . . . . . . . . . . . . . . 16 ran (comp‘𝑌) ∈ V
8483uniex 7678 . . . . . . . . . . . . . . 15 ran (comp‘𝑌) ∈ V
8584rnex 7849 . . . . . . . . . . . . . 14 ran ran (comp‘𝑌) ∈ V
8685uniex 7678 . . . . . . . . . . . . 13 ran ran (comp‘𝑌) ∈ V
8786pwex 5335 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑌) ∈ V
8881, 87xpex 7687 . . . . . . . . . . 11 (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V
89 fvex 6855 . . . . . . . . . . . . . 14 (Hom ‘𝑇) ∈ V
9089rnex 7849 . . . . . . . . . . . . 13 ran (Hom ‘𝑇) ∈ V
9190uniex 7678 . . . . . . . . . . . 12 ran (Hom ‘𝑇) ∈ V
9291, 91xpex 7687 . . . . . . . . . . 11 ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V
93 ovssunirn 7393 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))
94 ovssunirn 7393 . . . . . . . . . . . . . . . . 17 (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋)
95 rnss 5894 . . . . . . . . . . . . . . . . 17 ((⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
96 uniss 4873 . . . . . . . . . . . . . . . . 17 (ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
9794, 95, 96mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋)
9893, 97sstri 3953 . . . . . . . . . . . . . . 15 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋)
99 ovex 7390 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ V
10099elpw 4564 . . . . . . . . . . . . . . 15 (((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ↔ ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋))
10198, 100mpbir 230 . . . . . . . . . . . . . 14 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋)
102 ovssunirn 7393 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))
103 ovssunirn 7393 . . . . . . . . . . . . . . . . 17 (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌)
104 rnss 5894 . . . . . . . . . . . . . . . . 17 ((⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
105 uniss 4873 . . . . . . . . . . . . . . . . 17 (ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
106103, 104, 105mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌)
107102, 106sstri 3953 . . . . . . . . . . . . . . 15 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌)
108 ovex 7390 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ V
109108elpw 4564 . . . . . . . . . . . . . . 15 (((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌) ↔ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌))
110107, 109mpbir 230 . . . . . . . . . . . . . 14 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)
111 opelxpi 5670 . . . . . . . . . . . . . 14 ((((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ∧ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
112101, 110, 111mp2an 690 . . . . . . . . . . . . 13 ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
113112rgen2w 3069 . . . . . . . . . . . 12 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
114 eqid 2736 . . . . . . . . . . . . 13 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)
115114fmpo 8000 . . . . . . . . . . . 12 (∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↔ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
116113, 115mpbi 229 . . . . . . . . . . 11 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
117 ovssunirn 7393 . . . . . . . . . . . 12 ((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇)
118 fvssunirn 6875 . . . . . . . . . . . 12 ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)
119 xpss12 5648 . . . . . . . . . . . 12 ((((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇) ∧ ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)) → (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
120117, 118, 119mp2an 690 . . . . . . . . . . 11 (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))
121 elpm2r 8783 . . . . . . . . . . 11 ((((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V ∧ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V) ∧ ((𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∧ (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))) → (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
12288, 92, 116, 120, 121mp4an 691 . . . . . . . . . 10 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
123122rgen2w 3069 . . . . . . . . 9 𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
124 eqid 2736 . . . . . . . . . 10 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))
125124fmpo 8000 . . . . . . . . 9 (∀𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ↔ (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
126123, 125mpbi 229 . . . . . . . 8 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
127126a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
12817, 58, 75, 127wunf 10663 . . . . . 6 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) ∈ 𝑈)
12917, 57, 128wunop 10658 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩ ∈ 𝑈)
13017, 27, 55, 129wuntp 10647 . . . 4 (𝜑 → {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩} ∈ 𝑈)
13116, 130eqeltrd 2838 . . 3 (𝜑𝑇𝑈)
13222, 23, 17catcbas 17987 . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Cat))
1338, 132eleqtrd 2840 . . . . 5 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
134133elin2d 4159 . . . 4 (𝜑𝑋 ∈ Cat)
1359, 132eleqtrd 2840 . . . . 5 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
136135elin2d 4159 . . . 4 (𝜑𝑌 ∈ Cat)
1371, 134, 136xpccat 18078 . . 3 (𝜑𝑇 ∈ Cat)
138131, 137elind 4154 . 2 (𝜑𝑇 ∈ (𝑈 ∩ Cat))
139138, 132eleqtrrd 2841 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560  {ctp 4590  cop 4592   cuni 4865   × cxp 5631  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  ωcom 7802  1st c1st 7919  2nd c2nd 7920  pm cpm 8766  WUnicwun 10636  ndxcnx 17065  Basecbs 17083  Hom chom 17144  compcco 17145  Catccat 17544  CatCatccatc 17984   ×c cxpc 18056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-wun 10638  df-ni 10808  df-pli 10809  df-mi 10810  df-lti 10811  df-plpq 10844  df-mpq 10845  df-ltpq 10846  df-enq 10847  df-nq 10848  df-erq 10849  df-plq 10850  df-mq 10851  df-1nq 10852  df-rq 10853  df-ltnq 10854  df-np 10917  df-plp 10919  df-ltp 10921  df-enr 10991  df-nr 10992  df-c 11057  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-hom 17157  df-cco 17158  df-cat 17548  df-cid 17549  df-catc 17985  df-xpc 18060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator