MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcxpccl Structured version   Visualization version   GIF version

Theorem catcxpccl 17457
Description: The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcxpccl.c 𝐶 = (CatCat‘𝑈)
catcxpccl.b 𝐵 = (Base‘𝐶)
catcxpccl.o 𝑇 = (𝑋 ×c 𝑌)
catcxpccl.u (𝜑𝑈 ∈ WUni)
catcxpccl.1 (𝜑 → ω ∈ 𝑈)
catcxpccl.x (𝜑𝑋𝐵)
catcxpccl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catcxpccl (𝜑𝑇𝐵)

Proof of Theorem catcxpccl
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcxpccl.o . . . . 5 𝑇 = (𝑋 ×c 𝑌)
2 eqid 2821 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
3 eqid 2821 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2821 . . . . 5 (Hom ‘𝑋) = (Hom ‘𝑋)
5 eqid 2821 . . . . 5 (Hom ‘𝑌) = (Hom ‘𝑌)
6 eqid 2821 . . . . 5 (comp‘𝑋) = (comp‘𝑋)
7 eqid 2821 . . . . 5 (comp‘𝑌) = (comp‘𝑌)
8 catcxpccl.x . . . . 5 (𝜑𝑋𝐵)
9 catcxpccl.y . . . . 5 (𝜑𝑌𝐵)
10 eqidd 2822 . . . . 5 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) = ((Base‘𝑋) × (Base‘𝑌)))
111, 2, 3xpcbas 17428 . . . . . . 7 ((Base‘𝑋) × (Base‘𝑌)) = (Base‘𝑇)
12 eqid 2821 . . . . . . 7 (Hom ‘𝑇) = (Hom ‘𝑇)
131, 11, 4, 5, 12xpchomfval 17429 . . . . . 6 (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
1413a1i 11 . . . . 5 (𝜑 → (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))))
15 eqidd 2822 . . . . 5 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15xpcval 17427 . . . 4 (𝜑𝑇 = {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩})
17 catcxpccl.u . . . . 5 (𝜑𝑈 ∈ WUni)
18 df-base 16489 . . . . . . 7 Base = Slot 1
19 catcxpccl.1 . . . . . . . 8 (𝜑 → ω ∈ 𝑈)
2017, 19wunndx 16504 . . . . . . 7 (𝜑 → ndx ∈ 𝑈)
2118, 17, 20wunstr 16507 . . . . . 6 (𝜑 → (Base‘ndx) ∈ 𝑈)
22 catcxpccl.c . . . . . . . . . . 11 𝐶 = (CatCat‘𝑈)
23 catcxpccl.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
2422, 23, 17catcbas 17357 . . . . . . . . . 10 (𝜑𝐵 = (𝑈 ∩ Cat))
258, 24eleqtrd 2915 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
2625elin1d 4175 . . . . . . . 8 (𝜑𝑋𝑈)
2718, 17, 26wunstr 16507 . . . . . . 7 (𝜑 → (Base‘𝑋) ∈ 𝑈)
289, 24eleqtrd 2915 . . . . . . . . 9 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
2928elin1d 4175 . . . . . . . 8 (𝜑𝑌𝑈)
3018, 17, 29wunstr 16507 . . . . . . 7 (𝜑 → (Base‘𝑌) ∈ 𝑈)
3117, 27, 30wunxp 10146 . . . . . 6 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) ∈ 𝑈)
3217, 21, 31wunop 10144 . . . . 5 (𝜑 → ⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩ ∈ 𝑈)
33 df-hom 16589 . . . . . . 7 Hom = Slot 14
3433, 17, 20wunstr 16507 . . . . . 6 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
3517, 31, 31wunxp 10146 . . . . . . . 8 (𝜑 → (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
3633, 17, 26wunstr 16507 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑋) ∈ 𝑈)
3717, 36wunrn 10151 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑋) ∈ 𝑈)
3817, 37wununi 10128 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑋) ∈ 𝑈)
3933, 17, 29wunstr 16507 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑌) ∈ 𝑈)
4017, 39wunrn 10151 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑌) ∈ 𝑈)
4117, 40wununi 10128 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑌) ∈ 𝑈)
4217, 38, 41wunxp 10146 . . . . . . . . 9 (𝜑 → ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
4317, 42wunpw 10129 . . . . . . . 8 (𝜑 → 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
44 ovssunirn 7192 . . . . . . . . . . . . 13 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋)
45 ovssunirn 7192 . . . . . . . . . . . . 13 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)
46 xpss12 5570 . . . . . . . . . . . . 13 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋) ∧ ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)) → (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
4744, 45, 46mp2an 690 . . . . . . . . . . . 12 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
48 ovex 7189 . . . . . . . . . . . . . 14 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ∈ V
49 ovex 7189 . . . . . . . . . . . . . 14 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ∈ V
5048, 49xpex 7476 . . . . . . . . . . . . 13 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ V
5150elpw 4543 . . . . . . . . . . . 12 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5247, 51mpbir 233 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
5352rgen2w 3151 . . . . . . . . . 10 𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
54 eqid 2821 . . . . . . . . . . 11 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
5554fmpo 7766 . . . . . . . . . 10 (∀𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5653, 55mpbi 232 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
5756a1i 11 . . . . . . . 8 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5817, 35, 43, 57wunf 10149 . . . . . . 7 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) ∈ 𝑈)
5913, 58eqeltrid 2917 . . . . . 6 (𝜑 → (Hom ‘𝑇) ∈ 𝑈)
6017, 34, 59wunop 10144 . . . . 5 (𝜑 → ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩ ∈ 𝑈)
61 df-cco 16590 . . . . . . 7 comp = Slot 15
6261, 17, 20wunstr 16507 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
6317, 35, 31wunxp 10146 . . . . . . 7 (𝜑 → ((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
6461, 17, 26wunstr 16507 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑋) ∈ 𝑈)
6517, 64wunrn 10151 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑋) ∈ 𝑈)
6617, 65wununi 10128 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑋) ∈ 𝑈)
6717, 66wunrn 10151 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑋) ∈ 𝑈)
6817, 67wununi 10128 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑋) ∈ 𝑈)
6917, 68wunpw 10129 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑋) ∈ 𝑈)
7061, 17, 29wunstr 16507 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑌) ∈ 𝑈)
7117, 70wunrn 10151 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑌) ∈ 𝑈)
7217, 71wununi 10128 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑌) ∈ 𝑈)
7317, 72wunrn 10151 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑌) ∈ 𝑈)
7417, 73wununi 10128 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑌) ∈ 𝑈)
7517, 74wunpw 10129 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑌) ∈ 𝑈)
7617, 69, 75wunxp 10146 . . . . . . . 8 (𝜑 → (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ 𝑈)
7717, 59wunrn 10151 . . . . . . . . . 10 (𝜑 → ran (Hom ‘𝑇) ∈ 𝑈)
7817, 77wununi 10128 . . . . . . . . 9 (𝜑 ran (Hom ‘𝑇) ∈ 𝑈)
7917, 78, 78wunxp 10146 . . . . . . . 8 (𝜑 → ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ 𝑈)
8017, 76, 79wunpm 10147 . . . . . . 7 (𝜑 → ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ∈ 𝑈)
81 fvex 6683 . . . . . . . . . . . . . . . . 17 (comp‘𝑋) ∈ V
8281rnex 7617 . . . . . . . . . . . . . . . 16 ran (comp‘𝑋) ∈ V
8382uniex 7467 . . . . . . . . . . . . . . 15 ran (comp‘𝑋) ∈ V
8483rnex 7617 . . . . . . . . . . . . . 14 ran ran (comp‘𝑋) ∈ V
8584uniex 7467 . . . . . . . . . . . . 13 ran ran (comp‘𝑋) ∈ V
8685pwex 5281 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑋) ∈ V
87 fvex 6683 . . . . . . . . . . . . . . . . 17 (comp‘𝑌) ∈ V
8887rnex 7617 . . . . . . . . . . . . . . . 16 ran (comp‘𝑌) ∈ V
8988uniex 7467 . . . . . . . . . . . . . . 15 ran (comp‘𝑌) ∈ V
9089rnex 7617 . . . . . . . . . . . . . 14 ran ran (comp‘𝑌) ∈ V
9190uniex 7467 . . . . . . . . . . . . 13 ran ran (comp‘𝑌) ∈ V
9291pwex 5281 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑌) ∈ V
9386, 92xpex 7476 . . . . . . . . . . 11 (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V
94 fvex 6683 . . . . . . . . . . . . . 14 (Hom ‘𝑇) ∈ V
9594rnex 7617 . . . . . . . . . . . . 13 ran (Hom ‘𝑇) ∈ V
9695uniex 7467 . . . . . . . . . . . 12 ran (Hom ‘𝑇) ∈ V
9796, 96xpex 7476 . . . . . . . . . . 11 ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V
98 ovssunirn 7192 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))
99 ovssunirn 7192 . . . . . . . . . . . . . . . . 17 (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋)
100 rnss 5809 . . . . . . . . . . . . . . . . 17 ((⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
101 uniss 4846 . . . . . . . . . . . . . . . . 17 (ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
10299, 100, 101mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋)
10398, 102sstri 3976 . . . . . . . . . . . . . . 15 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋)
104 ovex 7189 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ V
105104elpw 4543 . . . . . . . . . . . . . . 15 (((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ↔ ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋))
106103, 105mpbir 233 . . . . . . . . . . . . . 14 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋)
107 ovssunirn 7192 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))
108 ovssunirn 7192 . . . . . . . . . . . . . . . . 17 (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌)
109 rnss 5809 . . . . . . . . . . . . . . . . 17 ((⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
110 uniss 4846 . . . . . . . . . . . . . . . . 17 (ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
111108, 109, 110mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌)
112107, 111sstri 3976 . . . . . . . . . . . . . . 15 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌)
113 ovex 7189 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ V
114113elpw 4543 . . . . . . . . . . . . . . 15 (((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌) ↔ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌))
115112, 114mpbir 233 . . . . . . . . . . . . . 14 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)
116 opelxpi 5592 . . . . . . . . . . . . . 14 ((((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ∧ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
117106, 115, 116mp2an 690 . . . . . . . . . . . . 13 ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
118117rgen2w 3151 . . . . . . . . . . . 12 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
119 eqid 2821 . . . . . . . . . . . . 13 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)
120119fmpo 7766 . . . . . . . . . . . 12 (∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↔ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
121118, 120mpbi 232 . . . . . . . . . . 11 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
122 ovssunirn 7192 . . . . . . . . . . . 12 ((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇)
123 fvssunirn 6699 . . . . . . . . . . . 12 ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)
124 xpss12 5570 . . . . . . . . . . . 12 ((((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇) ∧ ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)) → (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
125122, 123, 124mp2an 690 . . . . . . . . . . 11 (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))
126 elpm2r 8424 . . . . . . . . . . 11 ((((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V ∧ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V) ∧ ((𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∧ (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))) → (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
12793, 97, 121, 125, 126mp4an 691 . . . . . . . . . 10 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
128127rgen2w 3151 . . . . . . . . 9 𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
129 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))
130129fmpo 7766 . . . . . . . . 9 (∀𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ↔ (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
131128, 130mpbi 232 . . . . . . . 8 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
132131a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
13317, 63, 80, 132wunf 10149 . . . . . 6 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) ∈ 𝑈)
13417, 62, 133wunop 10144 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩ ∈ 𝑈)
13517, 32, 60, 134wuntp 10133 . . . 4 (𝜑 → {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩} ∈ 𝑈)
13616, 135eqeltrd 2913 . . 3 (𝜑𝑇𝑈)
13725elin2d 4176 . . . 4 (𝜑𝑋 ∈ Cat)
13828elin2d 4176 . . . 4 (𝜑𝑌 ∈ Cat)
1391, 137, 138xpccat 17440 . . 3 (𝜑𝑇 ∈ Cat)
140136, 139elind 4171 . 2 (𝜑𝑇 ∈ (𝑈 ∩ Cat))
141140, 24eleqtrrd 2916 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cin 3935  wss 3936  𝒫 cpw 4539  {ctp 4571  cop 4573   cuni 4838   × cxp 5553  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  ωcom 7580  1st c1st 7687  2nd c2nd 7688  pm cpm 8407  WUnicwun 10122  1c1 10538  4c4 11695  5c5 11696  cdc 12099  ndxcnx 16480  Basecbs 16483  Hom chom 16576  compcco 16577  Catccat 16935  CatCatccatc 17354   ×c cxpc 17418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-wun 10124  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340  df-np 10403  df-plp 10405  df-ltp 10407  df-enr 10477  df-nr 10478  df-c 10543  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-hom 16589  df-cco 16590  df-cat 16939  df-cid 16940  df-catc 17355  df-xpc 17422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator