MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcxpccl Structured version   Visualization version   GIF version

Theorem catcxpccl 18164
Description: The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.)
Hypotheses
Ref Expression
catcxpccl.c 𝐶 = (CatCat‘𝑈)
catcxpccl.b 𝐵 = (Base‘𝐶)
catcxpccl.o 𝑇 = (𝑋 ×c 𝑌)
catcxpccl.u (𝜑𝑈 ∈ WUni)
catcxpccl.1 (𝜑 → ω ∈ 𝑈)
catcxpccl.x (𝜑𝑋𝐵)
catcxpccl.y (𝜑𝑌𝐵)
Assertion
Ref Expression
catcxpccl (𝜑𝑇𝐵)

Proof of Theorem catcxpccl
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcxpccl.o . . . . 5 𝑇 = (𝑋 ×c 𝑌)
2 eqid 2731 . . . . 5 (Base‘𝑋) = (Base‘𝑋)
3 eqid 2731 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2731 . . . . 5 (Hom ‘𝑋) = (Hom ‘𝑋)
5 eqid 2731 . . . . 5 (Hom ‘𝑌) = (Hom ‘𝑌)
6 eqid 2731 . . . . 5 (comp‘𝑋) = (comp‘𝑋)
7 eqid 2731 . . . . 5 (comp‘𝑌) = (comp‘𝑌)
8 catcxpccl.x . . . . 5 (𝜑𝑋𝐵)
9 catcxpccl.y . . . . 5 (𝜑𝑌𝐵)
10 eqidd 2732 . . . . 5 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) = ((Base‘𝑋) × (Base‘𝑌)))
111, 2, 3xpcbas 18135 . . . . . . 7 ((Base‘𝑋) × (Base‘𝑌)) = (Base‘𝑇)
12 eqid 2731 . . . . . . 7 (Hom ‘𝑇) = (Hom ‘𝑇)
131, 11, 4, 5, 12xpchomfval 18136 . . . . . 6 (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
1413a1i 11 . . . . 5 (𝜑 → (Hom ‘𝑇) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))))
15 eqidd 2732 . . . . 5 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15xpcval 18134 . . . 4 (𝜑𝑇 = {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩})
17 catcxpccl.u . . . . 5 (𝜑𝑈 ∈ WUni)
18 baseid 17152 . . . . . . 7 Base = Slot (Base‘ndx)
19 catcxpccl.1 . . . . . . . 8 (𝜑 → ω ∈ 𝑈)
2017, 19wunndx 17133 . . . . . . 7 (𝜑 → ndx ∈ 𝑈)
2118, 17, 20wunstr 17126 . . . . . 6 (𝜑 → (Base‘ndx) ∈ 𝑈)
22 catcxpccl.c . . . . . . . 8 𝐶 = (CatCat‘𝑈)
23 catcxpccl.b . . . . . . . 8 𝐵 = (Base‘𝐶)
2422, 23, 17, 8catcbaselcl 18069 . . . . . . 7 (𝜑 → (Base‘𝑋) ∈ 𝑈)
2522, 23, 17, 9catcbaselcl 18069 . . . . . . 7 (𝜑 → (Base‘𝑌) ∈ 𝑈)
2617, 24, 25wunxp 10723 . . . . . 6 (𝜑 → ((Base‘𝑋) × (Base‘𝑌)) ∈ 𝑈)
2717, 21, 26wunop 10721 . . . . 5 (𝜑 → ⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩ ∈ 𝑈)
28 homid 17362 . . . . . . 7 Hom = Slot (Hom ‘ndx)
2928, 17, 20wunstr 17126 . . . . . 6 (𝜑 → (Hom ‘ndx) ∈ 𝑈)
3017, 26, 26wunxp 10723 . . . . . . . 8 (𝜑 → (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
3122, 23, 17, 8catchomcl 18070 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑋) ∈ 𝑈)
3217, 31wunrn 10728 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑋) ∈ 𝑈)
3317, 32wununi 10705 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑋) ∈ 𝑈)
3422, 23, 17, 9catchomcl 18070 . . . . . . . . . . . 12 (𝜑 → (Hom ‘𝑌) ∈ 𝑈)
3517, 34wunrn 10728 . . . . . . . . . . 11 (𝜑 → ran (Hom ‘𝑌) ∈ 𝑈)
3617, 35wununi 10705 . . . . . . . . . 10 (𝜑 ran (Hom ‘𝑌) ∈ 𝑈)
3717, 33, 36wunxp 10723 . . . . . . . . 9 (𝜑 → ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
3817, 37wunpw 10706 . . . . . . . 8 (𝜑 → 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ∈ 𝑈)
39 ovssunirn 7448 . . . . . . . . . . . . 13 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋)
40 ovssunirn 7448 . . . . . . . . . . . . 13 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)
41 xpss12 5691 . . . . . . . . . . . . 13 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ⊆ ran (Hom ‘𝑋) ∧ ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ⊆ ran (Hom ‘𝑌)) → (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
4239, 40, 41mp2an 689 . . . . . . . . . . . 12 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
43 ovex 7445 . . . . . . . . . . . . . 14 ((1st𝑢)(Hom ‘𝑋)(1st𝑣)) ∈ V
44 ovex 7445 . . . . . . . . . . . . . 14 ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)) ∈ V
4543, 44xpex 7744 . . . . . . . . . . . . 13 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ V
4645elpw 4606 . . . . . . . . . . . 12 ((((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ⊆ ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
4742, 46mpbir 230 . . . . . . . . . . 11 (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
4847rgen2w 3065 . . . . . . . . . 10 𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
49 eqid 2731 . . . . . . . . . . 11 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) = (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))))
5049fmpo 8058 . . . . . . . . . 10 (∀𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌))∀𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌))(((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣))) ∈ 𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)) ↔ (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5148, 50mpbi 229 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌))
5251a1i 11 . . . . . . . 8 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))):(((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))⟶𝒫 ( ran (Hom ‘𝑋) × ran (Hom ‘𝑌)))
5317, 30, 38, 52wunf 10726 . . . . . . 7 (𝜑 → (𝑢 ∈ ((Base‘𝑋) × (Base‘𝑌)), 𝑣 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (((1st𝑢)(Hom ‘𝑋)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑌)(2nd𝑣)))) ∈ 𝑈)
5413, 53eqeltrid 2836 . . . . . 6 (𝜑 → (Hom ‘𝑇) ∈ 𝑈)
5517, 29, 54wunop 10721 . . . . 5 (𝜑 → ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩ ∈ 𝑈)
56 ccoid 17364 . . . . . . 7 comp = Slot (comp‘ndx)
5756, 17, 20wunstr 17126 . . . . . 6 (𝜑 → (comp‘ndx) ∈ 𝑈)
5817, 30, 26wunxp 10723 . . . . . . 7 (𝜑 → ((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌))) ∈ 𝑈)
5922, 23, 17, 8catcccocl 18071 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑋) ∈ 𝑈)
6017, 59wunrn 10728 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑋) ∈ 𝑈)
6117, 60wununi 10705 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑋) ∈ 𝑈)
6217, 61wunrn 10728 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑋) ∈ 𝑈)
6317, 62wununi 10705 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑋) ∈ 𝑈)
6417, 63wunpw 10706 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑋) ∈ 𝑈)
6522, 23, 17, 9catcccocl 18071 . . . . . . . . . . . . . 14 (𝜑 → (comp‘𝑌) ∈ 𝑈)
6617, 65wunrn 10728 . . . . . . . . . . . . 13 (𝜑 → ran (comp‘𝑌) ∈ 𝑈)
6717, 66wununi 10705 . . . . . . . . . . . 12 (𝜑 ran (comp‘𝑌) ∈ 𝑈)
6817, 67wunrn 10728 . . . . . . . . . . 11 (𝜑 → ran ran (comp‘𝑌) ∈ 𝑈)
6917, 68wununi 10705 . . . . . . . . . 10 (𝜑 ran ran (comp‘𝑌) ∈ 𝑈)
7017, 69wunpw 10706 . . . . . . . . 9 (𝜑 → 𝒫 ran ran (comp‘𝑌) ∈ 𝑈)
7117, 64, 70wunxp 10723 . . . . . . . 8 (𝜑 → (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ 𝑈)
7217, 54wunrn 10728 . . . . . . . . . 10 (𝜑 → ran (Hom ‘𝑇) ∈ 𝑈)
7317, 72wununi 10705 . . . . . . . . 9 (𝜑 ran (Hom ‘𝑇) ∈ 𝑈)
7417, 73, 73wunxp 10723 . . . . . . . 8 (𝜑 → ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ 𝑈)
7517, 71, 74wunpm 10724 . . . . . . 7 (𝜑 → ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ∈ 𝑈)
76 fvex 6904 . . . . . . . . . . . . . . . . 17 (comp‘𝑋) ∈ V
7776rnex 7907 . . . . . . . . . . . . . . . 16 ran (comp‘𝑋) ∈ V
7877uniex 7735 . . . . . . . . . . . . . . 15 ran (comp‘𝑋) ∈ V
7978rnex 7907 . . . . . . . . . . . . . 14 ran ran (comp‘𝑋) ∈ V
8079uniex 7735 . . . . . . . . . . . . 13 ran ran (comp‘𝑋) ∈ V
8180pwex 5378 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑋) ∈ V
82 fvex 6904 . . . . . . . . . . . . . . . . 17 (comp‘𝑌) ∈ V
8382rnex 7907 . . . . . . . . . . . . . . . 16 ran (comp‘𝑌) ∈ V
8483uniex 7735 . . . . . . . . . . . . . . 15 ran (comp‘𝑌) ∈ V
8584rnex 7907 . . . . . . . . . . . . . 14 ran ran (comp‘𝑌) ∈ V
8685uniex 7735 . . . . . . . . . . . . 13 ran ran (comp‘𝑌) ∈ V
8786pwex 5378 . . . . . . . . . . . 12 𝒫 ran ran (comp‘𝑌) ∈ V
8881, 87xpex 7744 . . . . . . . . . . 11 (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V
89 fvex 6904 . . . . . . . . . . . . . 14 (Hom ‘𝑇) ∈ V
9089rnex 7907 . . . . . . . . . . . . 13 ran (Hom ‘𝑇) ∈ V
9190uniex 7735 . . . . . . . . . . . 12 ran (Hom ‘𝑇) ∈ V
9291, 91xpex 7744 . . . . . . . . . . 11 ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V
93 ovssunirn 7448 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))
94 ovssunirn 7448 . . . . . . . . . . . . . . . . 17 (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋)
95 rnss 5938 . . . . . . . . . . . . . . . . 17 ((⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
96 uniss 4916 . . . . . . . . . . . . . . . . 17 (ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋) → ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋))
9794, 95, 96mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦)) ⊆ ran ran (comp‘𝑋)
9893, 97sstri 3991 . . . . . . . . . . . . . . 15 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋)
99 ovex 7445 . . . . . . . . . . . . . . . 16 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ V
10099elpw 4606 . . . . . . . . . . . . . . 15 (((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ↔ ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ⊆ ran ran (comp‘𝑋))
10198, 100mpbir 230 . . . . . . . . . . . . . 14 ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋)
102 ovssunirn 7448 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))
103 ovssunirn 7448 . . . . . . . . . . . . . . . . 17 (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌)
104 rnss 5938 . . . . . . . . . . . . . . . . 17 ((⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
105 uniss 4916 . . . . . . . . . . . . . . . . 17 (ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌) → ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌))
106103, 104, 105mp2b 10 . . . . . . . . . . . . . . . 16 ran (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦)) ⊆ ran ran (comp‘𝑌)
107102, 106sstri 3991 . . . . . . . . . . . . . . 15 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌)
108 ovex 7445 . . . . . . . . . . . . . . . 16 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ V
109108elpw 4606 . . . . . . . . . . . . . . 15 (((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌) ↔ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ⊆ ran ran (comp‘𝑌))
110107, 109mpbir 230 . . . . . . . . . . . . . 14 ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)
111 opelxpi 5713 . . . . . . . . . . . . . 14 ((((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)) ∈ 𝒫 ran ran (comp‘𝑋) ∧ ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓)) ∈ 𝒫 ran ran (comp‘𝑌)) → ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
112101, 110, 111mp2an 689 . . . . . . . . . . . . 13 ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
113112rgen2w 3065 . . . . . . . . . . . 12 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
114 eqid 2731 . . . . . . . . . . . . 13 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) = (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)
115114fmpo 8058 . . . . . . . . . . . 12 (∀𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦)∀𝑓 ∈ ((Hom ‘𝑇)‘𝑥)⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩ ∈ (𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↔ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)))
116113, 115mpbi 229 . . . . . . . . . . 11 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌))
117 ovssunirn 7448 . . . . . . . . . . . 12 ((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇)
118 fvssunirn 6924 . . . . . . . . . . . 12 ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)
119 xpss12 5691 . . . . . . . . . . . 12 ((((2nd𝑥)(Hom ‘𝑇)𝑦) ⊆ ran (Hom ‘𝑇) ∧ ((Hom ‘𝑇)‘𝑥) ⊆ ran (Hom ‘𝑇)) → (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
120117, 118, 119mp2an 689 . . . . . . . . . . 11 (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))
121 elpm2r 8843 . . . . . . . . . . 11 ((((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∈ V ∧ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)) ∈ V) ∧ ((𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩):(((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥))⟶(𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ∧ (((2nd𝑥)(Hom ‘𝑇)𝑦) × ((Hom ‘𝑇)‘𝑥)) ⊆ ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))) → (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
12288, 92, 116, 120, 121mp4an 690 . . . . . . . . . 10 (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
123122rgen2w 3065 . . . . . . . . 9 𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
124 eqid 2731 . . . . . . . . . 10 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))
125124fmpo 8058 . . . . . . . . 9 (∀𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌)))∀𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌))(𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩) ∈ ((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))) ↔ (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
126123, 125mpbi 229 . . . . . . . 8 (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇)))
127126a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)):((((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))) × ((Base‘𝑋) × (Base‘𝑌)))⟶((𝒫 ran ran (comp‘𝑋) × 𝒫 ran ran (comp‘𝑌)) ↑pm ( ran (Hom ‘𝑇) × ran (Hom ‘𝑇))))
12817, 58, 75, 127wunf 10726 . . . . . 6 (𝜑 → (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩)) ∈ 𝑈)
12917, 57, 128wunop 10721 . . . . 5 (𝜑 → ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩ ∈ 𝑈)
13017, 27, 55, 129wuntp 10710 . . . 4 (𝜑 → {⟨(Base‘ndx), ((Base‘𝑋) × (Base‘𝑌))⟩, ⟨(Hom ‘ndx), (Hom ‘𝑇)⟩, ⟨(comp‘ndx), (𝑥 ∈ (((Base‘𝑋) × (Base‘𝑌)) × ((Base‘𝑋) × (Base‘𝑌))), 𝑦 ∈ ((Base‘𝑋) × (Base‘𝑌)) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑇)𝑦), 𝑓 ∈ ((Hom ‘𝑇)‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑋)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑌)(2nd𝑦))(2nd𝑓))⟩))⟩} ∈ 𝑈)
13116, 130eqeltrd 2832 . . 3 (𝜑𝑇𝑈)
13222, 23, 17catcbas 18056 . . . . . 6 (𝜑𝐵 = (𝑈 ∩ Cat))
1338, 132eleqtrd 2834 . . . . 5 (𝜑𝑋 ∈ (𝑈 ∩ Cat))
134133elin2d 4199 . . . 4 (𝜑𝑋 ∈ Cat)
1359, 132eleqtrd 2834 . . . . 5 (𝜑𝑌 ∈ (𝑈 ∩ Cat))
136135elin2d 4199 . . . 4 (𝜑𝑌 ∈ Cat)
1371, 134, 136xpccat 18147 . . 3 (𝜑𝑇 ∈ Cat)
138131, 137elind 4194 . 2 (𝜑𝑇 ∈ (𝑈 ∩ Cat))
139138, 132eleqtrrd 2835 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  cin 3947  wss 3948  𝒫 cpw 4602  {ctp 4632  cop 4634   cuni 4908   × cxp 5674  ran crn 5677  wf 6539  cfv 6543  (class class class)co 7412  cmpo 7414  ωcom 7859  1st c1st 7977  2nd c2nd 7978  pm cpm 8825  WUnicwun 10699  ndxcnx 17131  Basecbs 17149  Hom chom 17213  compcco 17214  Catccat 17613  CatCatccatc 18053   ×c cxpc 18125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-oadd 8474  df-omul 8475  df-er 8707  df-ec 8709  df-qs 8713  df-map 8826  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-wun 10701  df-ni 10871  df-pli 10872  df-mi 10873  df-lti 10874  df-plpq 10907  df-mpq 10908  df-ltpq 10909  df-enq 10910  df-nq 10911  df-erq 10912  df-plq 10913  df-mq 10914  df-1nq 10915  df-rq 10916  df-ltnq 10917  df-np 10980  df-plp 10982  df-ltp 10984  df-enr 11054  df-nr 11055  df-c 11120  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-struct 17085  df-slot 17120  df-ndx 17132  df-base 17150  df-hom 17226  df-cco 17227  df-cat 17617  df-cid 17618  df-catc 18054  df-xpc 18129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator