| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0ssdmfun | Structured version Visualization version GIF version | ||
| Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6948. (Contributed by AV, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| ovn0ssdmfun | ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6905 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝐹‘𝑝) = (𝐹‘〈𝑎, 𝑏〉)) | |
| 2 | df-ov 7435 | . . . . 5 ⊢ (𝑎𝐹𝑏) = (𝐹‘〈𝑎, 𝑏〉) | |
| 3 | 1, 2 | eqtr4di 2794 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝐹‘𝑝) = (𝑎𝐹𝑏)) |
| 4 | 3 | neeq1d 2999 | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((𝐹‘𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅)) |
| 5 | 4 | ralxp 5851 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ ↔ ∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅) |
| 6 | fvn0ssdmfun 7093 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | |
| 7 | 5, 6 | sylbir 235 | 1 ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ≠ wne 2939 ∀wral 3060 ⊆ wss 3950 ∅c0 4332 〈cop 4631 × cxp 5682 dom cdm 5684 ↾ cres 5686 Fun wfun 6554 ‘cfv 6560 (class class class)co 7432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-res 5696 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |