Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0ssdmfun | Structured version Visualization version GIF version |
Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6812. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
ovn0ssdmfun | ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝐹‘𝑝) = (𝐹‘〈𝑎, 𝑏〉)) | |
2 | df-ov 7278 | . . . . 5 ⊢ (𝑎𝐹𝑏) = (𝐹‘〈𝑎, 𝑏〉) | |
3 | 1, 2 | eqtr4di 2796 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝐹‘𝑝) = (𝑎𝐹𝑏)) |
4 | 3 | neeq1d 3003 | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((𝐹‘𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅)) |
5 | 4 | ralxp 5750 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ ↔ ∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅) |
6 | fvn0ssdmfun 6952 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | |
7 | 5, 6 | sylbir 234 | 1 ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ≠ wne 2943 ∀wral 3064 ⊆ wss 3887 ∅c0 4256 〈cop 4567 × cxp 5587 dom cdm 5589 ↾ cres 5591 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |