Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0ssdmfun Structured version   Visualization version   GIF version

Theorem ovn0ssdmfun 48258
Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6862. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
ovn0ssdmfun (∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏

Proof of Theorem ovn0ssdmfun
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹𝑝) = (𝐹‘⟨𝑎, 𝑏⟩))
2 df-ov 7349 . . . . 5 (𝑎𝐹𝑏) = (𝐹‘⟨𝑎, 𝑏⟩)
31, 2eqtr4di 2784 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹𝑝) = (𝑎𝐹𝑏))
43neeq1d 2987 . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝐹𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅))
54ralxp 5780 . 2 (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹𝑝) ≠ ∅ ↔ ∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅)
6 fvn0ssdmfun 7007 . 2 (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
75, 6sylbir 235 1 (∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wne 2928  wral 3047  wss 3897  c0 4280  cop 4579   × cxp 5612  dom cdm 5614  cres 5616  Fun wfun 6475  cfv 6481  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator