Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0ssdmfun | Structured version Visualization version GIF version |
Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6868. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
ovn0ssdmfun | ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6825 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝐹‘𝑝) = (𝐹‘〈𝑎, 𝑏〉)) | |
2 | df-ov 7340 | . . . . 5 ⊢ (𝑎𝐹𝑏) = (𝐹‘〈𝑎, 𝑏〉) | |
3 | 1, 2 | eqtr4di 2794 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝐹‘𝑝) = (𝑎𝐹𝑏)) |
4 | 3 | neeq1d 3000 | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((𝐹‘𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅)) |
5 | 4 | ralxp 5783 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ ↔ ∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅) |
6 | fvn0ssdmfun 7008 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | |
7 | 5, 6 | sylbir 234 | 1 ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ≠ wne 2940 ∀wral 3061 ⊆ wss 3898 ∅c0 4269 〈cop 4579 × cxp 5618 dom cdm 5620 ↾ cres 5622 Fun wfun 6473 ‘cfv 6479 (class class class)co 7337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-res 5632 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |