Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0ssdmfun Structured version   Visualization version   GIF version

Theorem ovn0ssdmfun 45681
Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6868. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
ovn0ssdmfun (∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏

Proof of Theorem ovn0ssdmfun
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6825 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹𝑝) = (𝐹‘⟨𝑎, 𝑏⟩))
2 df-ov 7340 . . . . 5 (𝑎𝐹𝑏) = (𝐹‘⟨𝑎, 𝑏⟩)
31, 2eqtr4di 2794 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹𝑝) = (𝑎𝐹𝑏))
43neeq1d 3000 . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝐹𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅))
54ralxp 5783 . 2 (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹𝑝) ≠ ∅ ↔ ∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅)
6 fvn0ssdmfun 7008 . 2 (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
75, 6sylbir 234 1 (∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wne 2940  wral 3061  wss 3898  c0 4269  cop 4579   × cxp 5618  dom cdm 5620  cres 5622  Fun wfun 6473  cfv 6479  (class class class)co 7337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-res 5632  df-iota 6431  df-fun 6481  df-fv 6487  df-ov 7340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator