Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0ssdmfun Structured version   Visualization version   GIF version

Theorem ovn0ssdmfun 48003
Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6950. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
ovn0ssdmfun (∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏

Proof of Theorem ovn0ssdmfun
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹𝑝) = (𝐹‘⟨𝑎, 𝑏⟩))
2 df-ov 7434 . . . . 5 (𝑎𝐹𝑏) = (𝐹‘⟨𝑎, 𝑏⟩)
31, 2eqtr4di 2793 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹𝑝) = (𝑎𝐹𝑏))
43neeq1d 2998 . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝐹𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅))
54ralxp 5855 . 2 (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹𝑝) ≠ ∅ ↔ ∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅)
6 fvn0ssdmfun 7094 . 2 (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
75, 6sylbir 235 1 (∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wne 2938  wral 3059  wss 3963  c0 4339  cop 4637   × cxp 5687  dom cdm 5689  cres 5691  Fun wfun 6557  cfv 6563  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator