![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0ssdmfun | Structured version Visualization version GIF version |
Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6934. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
ovn0ssdmfun | ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . 5 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹‘𝑝) = (𝐹‘⟨𝑎, 𝑏⟩)) | |
2 | df-ov 7417 | . . . . 5 ⊢ (𝑎𝐹𝑏) = (𝐹‘⟨𝑎, 𝑏⟩) | |
3 | 1, 2 | eqtr4di 2785 | . . . 4 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹‘𝑝) = (𝑎𝐹𝑏)) |
4 | 3 | neeq1d 2995 | . . 3 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝐹‘𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅)) |
5 | 4 | ralxp 5838 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ ↔ ∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅) |
6 | fvn0ssdmfun 7078 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | |
7 | 5, 6 | sylbir 234 | 1 ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ≠ wne 2935 ∀wral 3056 ⊆ wss 3944 ∅c0 4318 ⟨cop 4630 × cxp 5670 dom cdm 5672 ↾ cres 5674 Fun wfun 6536 ‘cfv 6542 (class class class)co 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |