Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0ssdmfun Structured version   Visualization version   GIF version

Theorem ovn0ssdmfun 42295
 Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6367. (Contributed by AV, 27-Jan-2020.)
Assertion
Ref Expression
ovn0ssdmfun (∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏

Proof of Theorem ovn0ssdmfun
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6332 . . . . 5 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹𝑝) = (𝐹‘⟨𝑎, 𝑏⟩))
2 df-ov 6796 . . . . 5 (𝑎𝐹𝑏) = (𝐹‘⟨𝑎, 𝑏⟩)
31, 2syl6eqr 2823 . . . 4 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹𝑝) = (𝑎𝐹𝑏))
43neeq1d 3002 . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝐹𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅))
54ralxp 5402 . 2 (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹𝑝) ≠ ∅ ↔ ∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅)
6 fvn0ssdmfun 6493 . 2 (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
75, 6sylbir 225 1 (∀𝑎𝐷𝑏𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ≠ wne 2943  ∀wral 3061   ⊆ wss 3723  ∅c0 4063  ⟨cop 4322   × cxp 5247  dom cdm 5249   ↾ cres 5251  Fun wfun 6025  ‘cfv 6031  (class class class)co 6793 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-res 5261  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6796 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator