| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0ssdmfun | Structured version Visualization version GIF version | ||
| Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6863. (Contributed by AV, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| ovn0ssdmfun | ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . 5 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝐹‘𝑝) = (𝐹‘〈𝑎, 𝑏〉)) | |
| 2 | df-ov 7352 | . . . . 5 ⊢ (𝑎𝐹𝑏) = (𝐹‘〈𝑎, 𝑏〉) | |
| 3 | 1, 2 | eqtr4di 2782 | . . . 4 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝐹‘𝑝) = (𝑎𝐹𝑏)) |
| 4 | 3 | neeq1d 2984 | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((𝐹‘𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅)) |
| 5 | 4 | ralxp 5784 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ ↔ ∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅) |
| 6 | fvn0ssdmfun 7008 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | |
| 7 | 5, 6 | sylbir 235 | 1 ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2925 ∀wral 3044 ⊆ wss 3903 ∅c0 4284 〈cop 4583 × cxp 5617 dom cdm 5619 ↾ cres 5621 Fun wfun 6476 ‘cfv 6482 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |