![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0ssdmfun | Structured version Visualization version GIF version |
Description: If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6886. (Contributed by AV, 27-Jan-2020.) |
Ref | Expression |
---|---|
ovn0ssdmfun | ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6843 | . . . . 5 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹‘𝑝) = (𝐹‘⟨𝑎, 𝑏⟩)) | |
2 | df-ov 7361 | . . . . 5 ⊢ (𝑎𝐹𝑏) = (𝐹‘⟨𝑎, 𝑏⟩) | |
3 | 1, 2 | eqtr4di 2791 | . . . 4 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → (𝐹‘𝑝) = (𝑎𝐹𝑏)) |
4 | 3 | neeq1d 3000 | . . 3 ⊢ (𝑝 = ⟨𝑎, 𝑏⟩ → ((𝐹‘𝑝) ≠ ∅ ↔ (𝑎𝐹𝑏) ≠ ∅)) |
5 | 4 | ralxp 5798 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ ↔ ∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅) |
6 | fvn0ssdmfun 7026 | . 2 ⊢ (∀𝑝 ∈ (𝐷 × 𝐸)(𝐹‘𝑝) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | |
7 | 5, 6 | sylbir 234 | 1 ⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ≠ wne 2940 ∀wral 3061 ⊆ wss 3911 ∅c0 4283 ⟨cop 4593 × cxp 5632 dom cdm 5634 ↾ cres 5636 Fun wfun 6491 ‘cfv 6497 (class class class)co 7358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-res 5646 df-iota 6449 df-fun 6499 df-fv 6505 df-ov 7361 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |