New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addceq1 | GIF version |
Description: Equality law for cardinal addition. (Contributed by SF, 15-Jan-2015.) |
Ref | Expression |
---|---|
addceq1 | ⊢ (A = B → (A +c C) = (B +c C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imakeq2 4226 | . 2 ⊢ (A = B → ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1C) “k A) = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1C) “k B)) | |
2 | dfaddc2 4382 | . 2 ⊢ (A +c C) = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1C) “k A) | |
3 | dfaddc2 4382 | . 2 ⊢ (B +c C) = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1C) “k B) | |
4 | 1, 2, 3 | 3eqtr4g 2410 | 1 ⊢ (A = B → (A +c C) = (B +c C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∼ ccompl 3206 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 ⊕ csymdif 3210 1cc1c 4135 ℘1cpw1 4136 Ins2k cins2k 4177 Ins3k cins3k 4178 “k cimak 4180 SIk csik 4182 Sk cssetk 4184 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-addc 4379 |
This theorem is referenced by: addceq12 4386 addceq1i 4387 addceq1d 4390 peano2 4404 nnc0suc 4413 nncaddccl 4420 nnsucelr 4429 nndisjeq 4430 opklefing 4449 opkltfing 4450 addcnnul 4454 preaddccan2 4456 leltfintr 4459 ltfintr 4460 ltfinex 4465 sucevenodd 4511 sucoddeven 4512 evenodddisjlem1 4516 oddtfin 4519 suc11nnc 4559 phi11lem1 4596 phialllem1 4617 braddcfn 5827 dfnnc3 5886 peano4nc 6151 dflec2 6211 lectr 6212 leaddc1 6215 addceq0 6220 csucex 6260 brcsuc 6261 nnltp1c 6263 addccan2nc 6266 nncdiv3lem1 6276 nncdiv3lem2 6277 nncdiv3 6278 nnc3n3p1 6279 nchoicelem9 6298 nchoicelem16 6305 nchoicelem17 6306 fnfreclem2 6319 fnfreclem3 6320 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |