NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addceq1 GIF version

Theorem addceq1 4384
Description: Equality law for cardinal addition. (Contributed by SF, 15-Jan-2015.)
Assertion
Ref Expression
addceq1 (A = B → (A +c C) = (B +c C))

Proof of Theorem addceq1
StepHypRef Expression
1 imakeq2 4226 . 2 (A = B → ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11C) “k A) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11C) “k B))
2 dfaddc2 4382 . 2 (A +c C) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11C) “k A)
3 dfaddc2 4382 . 2 (B +c C) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11C) “k B)
41, 2, 33eqtr4g 2410 1 (A = B → (A +c C) = (B +c C))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  ccompl 3206   cdif 3207  cun 3208  cin 3209  csymdif 3210  1cc1c 4135  1cpw1 4136   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   SIk csik 4182   Sk cssetk 4184   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-sik 4193  df-ssetk 4194  df-addc 4379
This theorem is referenced by:  addceq12  4386  addceq1i  4387  addceq1d  4390  peano2  4404  nnc0suc  4413  nncaddccl  4420  nnsucelr  4429  nndisjeq  4430  opklefing  4449  opkltfing  4450  addcnnul  4454  preaddccan2  4456  leltfintr  4459  ltfintr  4460  ltfinex  4465  sucevenodd  4511  sucoddeven  4512  evenodddisjlem1  4516  oddtfin  4519  suc11nnc  4559  phi11lem1  4596  phialllem1  4617  braddcfn  5827  dfnnc3  5886  peano4nc  6151  dflec2  6211  lectr  6212  leaddc1  6215  addceq0  6220  csucex  6260  brcsuc  6261  nnltp1c  6263  addccan2nc  6266  nncdiv3lem1  6276  nncdiv3lem2  6277  nncdiv3  6278  nnc3n3p1  6279  nchoicelem9  6298  nchoicelem16  6305  nchoicelem17  6306  fnfreclem2  6319  fnfreclem3  6320  frecsuc  6323
  Copyright terms: Public domain W3C validator