NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addceq12 GIF version

Theorem addceq12 4386
Description: Equality law for cardinal addition. (Contributed by SF, 15-Jan-2015.)
Assertion
Ref Expression
addceq12 ((A = C B = D) → (A +c B) = (C +c D))

Proof of Theorem addceq12
StepHypRef Expression
1 addceq1 4384 . 2 (A = C → (A +c B) = (C +c B))
2 addceq2 4385 . 2 (B = D → (C +c B) = (C +c D))
31, 2sylan9eq 2405 1 ((A = C B = D) → (A +c B) = (C +c D))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-sik 4193  df-ssetk 4194  df-addc 4379
This theorem is referenced by:  addceq12i  4389  addceq12d  4392  0ceven  4506  sucoddeven  4512  evenodddisj  4517  eventfin  4518  oddtfin  4519  sfintfin  4533  ncaddccl  6145  tcdi  6165  ce0addcnnul  6180  addceq0  6220  letc  6232  addcdi  6251  nncdiv3  6278  nnc3n3p1  6279
  Copyright terms: Public domain W3C validator