New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addceq12 | GIF version |
Description: Equality law for cardinal addition. (Contributed by SF, 15-Jan-2015.) |
Ref | Expression |
---|---|
addceq12 | ⊢ ((A = C ∧ B = D) → (A +c B) = (C +c D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addceq1 4384 | . 2 ⊢ (A = C → (A +c B) = (C +c B)) | |
2 | addceq2 4385 | . 2 ⊢ (B = D → (C +c B) = (C +c D)) | |
3 | 1, 2 | sylan9eq 2405 | 1 ⊢ ((A = C ∧ B = D) → (A +c B) = (C +c D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-addc 4379 |
This theorem is referenced by: addceq12i 4389 addceq12d 4392 0ceven 4506 sucoddeven 4512 evenodddisj 4517 eventfin 4518 oddtfin 4519 sfintfin 4533 ncaddccl 6145 tcdi 6165 ce0addcnnul 6180 addceq0 6220 letc 6232 addcdi 6251 nncdiv3 6278 nnc3n3p1 6279 |
Copyright terms: Public domain | W3C validator |