New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  tfinnnul GIF version

Theorem tfinnnul 4490
 Description: If M is a nonempty natural, then Tfin M is also nonempty. Corollary 1 of Theorem X.1.28 of [Rosser] p. 528. (Contributed by SF, 23-Jan-2015.)
Assertion
Ref Expression
tfinnnul ((M Nn M) → Tfin M)

Proof of Theorem tfinnnul
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 tfinprop 4489 . 2 ((M Nn M) → ( Tfin M Nn x M 1x Tfin M))
2 ne0i 3556 . . . 4 (1x Tfin MTfin M)
32rexlimivw 2734 . . 3 (x M 1x Tfin MTfin M)
43adantl 452 . 2 (( Tfin M Nn x M 1x Tfin M) → Tfin M)
51, 4syl 15 1 ((M Nn M) → Tfin M)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358   ∈ wcel 1710   ≠ wne 2516  ∃wrex 2615  ∅c0 3550  ℘1cpw1 4135   Nn cnnc 4373   Tfin ctfin 4435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-tfin 4443 This theorem is referenced by:  tfin11  4493  tfinltfinlem1  4500  eventfin  4517  oddtfin  4518
 Copyright terms: Public domain W3C validator