Proof of Theorem 1stex
Step | Hyp | Ref
| Expression |
1 | | df1st2 4739 |
. 2
⊢ 1st =
⋃1⋃1((((V ×k V)
×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ( ∼ ((
Ins2k Ins3k
Sk ⊕ ( Ins2k Ins2k (
Sk ∘k
SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) “k ℘11c)) |
2 | | vvex 4110 |
. . . . . . . 8
⊢ V ∈ V |
3 | 2, 2 | xpkex 4290 |
. . . . . . 7
⊢ (V
×k V) ∈
V |
4 | 3, 2 | xpkex 4290 |
. . . . . 6
⊢ ((V
×k V) ×k V) ∈ V |
5 | | setconslem5 4736 |
. . . . . . 7
⊢ ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) ∈
V |
6 | 5 | cnvkex 4288 |
. . . . . 6
⊢ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) ∈
V |
7 | 4, 6 | inex 4106 |
. . . . 5
⊢ (((V
×k V) ×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) ∈
V |
8 | | ssetkex 4295 |
. . . . . . . . . . 11
⊢ Sk ∈
V |
9 | 8 | ins3kex 4309 |
. . . . . . . . . 10
⊢ Ins3k Sk ∈
V |
10 | 9 | ins2kex 4308 |
. . . . . . . . 9
⊢ Ins2k Ins3k Sk ∈
V |
11 | | addcexlem 4383 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) ∈ V |
12 | | 1cex 4143 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
1c ∈
V |
13 | 12 | pw1ex 4304 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℘11c ∈ V |
14 | 13 | pw1ex 4304 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℘1℘11c ∈ V |
15 | 11, 14 | imakex 4301 |
. . . . . . . . . . . . . . . . . . 19
⊢ (( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∈ V |
16 | 15 | imagekex 4313 |
. . . . . . . . . . . . . . . . . 18
⊢
Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∈ V |
17 | | nncex 4397 |
. . . . . . . . . . . . . . . . . . 19
⊢ Nn ∈
V |
18 | 17, 2 | xpkex 4290 |
. . . . . . . . . . . . . . . . . 18
⊢ ( Nn ×k V) ∈ V |
19 | 16, 18 | inex 4106 |
. . . . . . . . . . . . . . . . 17
⊢
(Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∈ V |
20 | | idkex 4315 |
. . . . . . . . . . . . . . . . . 18
⊢
Ik ∈ V |
21 | 17 | complex 4105 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∼ Nn ∈
V |
22 | 21, 2 | xpkex 4290 |
. . . . . . . . . . . . . . . . . 18
⊢ ( ∼ Nn ×k V) ∈ V |
23 | 20, 22 | inex 4106 |
. . . . . . . . . . . . . . . . 17
⊢ (
Ik ∩ ( ∼ Nn
×k V)) ∈
V |
24 | 19, 23 | unex 4107 |
. . . . . . . . . . . . . . . 16
⊢
((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) ∈
V |
25 | 24 | imagekex 4313 |
. . . . . . . . . . . . . . 15
⊢
Imagek((Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∩ ( Nn ×k V)) ∪ (
Ik ∩ ( ∼ Nn
×k V))) ∈
V |
26 | 25 | cnvkex 4288 |
. . . . . . . . . . . . . 14
⊢ ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∈ V |
27 | 26 | sikex 4298 |
. . . . . . . . . . . . 13
⊢ SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∈ V |
28 | 8, 27 | cokex 4311 |
. . . . . . . . . . . 12
⊢ ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∈ V |
29 | 28 | ins2kex 4308 |
. . . . . . . . . . 11
⊢ Ins2k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∈ V |
30 | 29 | ins2kex 4308 |
. . . . . . . . . 10
⊢ Ins2k Ins2k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∈ V |
31 | 8 | ins2kex 4308 |
. . . . . . . . . . . . . . 15
⊢ Ins2k Sk ∈
V |
32 | 26, 8 | cokex 4311 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∈ V |
33 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
{{0c}} ∈
V |
34 | 33, 2 | xpkex 4290 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
({{0c}} ×k V) ∈ V |
35 | 32, 34 | unex 4107 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V)) ∈ V |
36 | 35 | ins3kex 4309 |
. . . . . . . . . . . . . . . . . . . 20
⊢ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V)) ∈ V |
37 | 31, 36 | symdifex 4109 |
. . . . . . . . . . . . . . . . . . 19
⊢ ( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) ∈ V |
38 | 37, 14 | imakex 4301 |
. . . . . . . . . . . . . . . . . 18
⊢ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) ∈
V |
39 | 38 | complex 4105 |
. . . . . . . . . . . . . . . . 17
⊢ ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) ∈
V |
40 | 39 | sikex 4298 |
. . . . . . . . . . . . . . . 16
⊢ SIk ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) ∈
V |
41 | 40 | ins3kex 4309 |
. . . . . . . . . . . . . . 15
⊢ Ins3k SIk ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c) ∈
V |
42 | 31, 41 | inex 4106 |
. . . . . . . . . . . . . 14
⊢ ( Ins2k Sk ∩ Ins3k SIk ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) ∈
V |
43 | 42, 14 | imakex 4301 |
. . . . . . . . . . . . 13
⊢ (( Ins2k Sk ∩ Ins3k SIk ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c) ∈
V |
44 | 43 | sikex 4298 |
. . . . . . . . . . . 12
⊢ SIk (( Ins2k Sk ∩ Ins3k SIk ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c) ∈
V |
45 | 44 | sikex 4298 |
. . . . . . . . . . 11
⊢ SIk SIk (( Ins2k Sk ∩ Ins3k SIk ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c) ∈
V |
46 | 45 | ins3kex 4309 |
. . . . . . . . . 10
⊢ Ins3k SIk SIk (( Ins2k Sk ∩ Ins3k SIk ∼ (( Ins2k Sk ⊕ Ins3k ((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c) ∈
V |
47 | 30, 46 | unex 4107 |
. . . . . . . . 9
⊢ ( Ins2k Ins2k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c)) ∈
V |
48 | 10, 47 | symdifex 4109 |
. . . . . . . 8
⊢ ( Ins2k Ins3k Sk ⊕ ( Ins2k Ins2k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) ∈
V |
49 | 14 | pw1ex 4304 |
. . . . . . . . 9
⊢ ℘1℘1℘11c ∈ V |
50 | 49 | pw1ex 4304 |
. . . . . . . 8
⊢ ℘1℘1℘1℘11c ∈ V |
51 | 48, 50 | imakex 4301 |
. . . . . . 7
⊢ (( Ins2k Ins3k Sk ⊕ ( Ins2k Ins2k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) ∈
V |
52 | 51 | complex 4105 |
. . . . . 6
⊢ ∼ (( Ins2k Ins3k Sk ⊕ ( Ins2k Ins2k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) ∈
V |
53 | 52, 13 | imakex 4301 |
. . . . 5
⊢ ( ∼ (( Ins2k Ins3k Sk ⊕ ( Ins2k Ins2k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) “k ℘11c) ∈
V |
54 | 7, 53 | imakex 4301 |
. . . 4
⊢ ((((V
×k V) ×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ( ∼ ((
Ins2k Ins3k
Sk ⊕ ( Ins2k Ins2k (
Sk ∘k
SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) “k ℘11c)) ∈
V |
55 | 54 | uni1ex 4294 |
. . 3
⊢
⋃1((((V ×k V)
×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ( ∼ ((
Ins2k Ins3k
Sk ⊕ ( Ins2k Ins2k (
Sk ∘k
SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) “k ℘11c)) ∈
V |
56 | 55 | uni1ex 4294 |
. 2
⊢
⋃1⋃1((((V ×k V)
×k V) ∩ ◡k ∼ (( Ins3k SIk SIk Sk ⊕ Ins2k ( Ins3k ( Sk ∘k SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins2k (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c)) “k ( ∼ ((
Ins2k Ins3k
Sk ⊕ ( Ins2k Ins2k (
Sk ∘k
SIk ◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V)))) ∪ Ins3k SIk SIk (( Ins2k Sk ∩
Ins3k SIk
∼ (( Ins2k Sk ⊕ Ins3k
((◡kImagek((Imagek((
Ins3k ∼ (( Ins3k Sk ∩
Ins2k Sk )
“k ℘1℘11c) ∖ ((
Ins2k Ins2k
Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k
SIk SIk
Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘11c) ∩ ( Nn
×k V)) ∪ ( Ik ∩ ( ∼ Nn
×k V))) ∘k Sk ) ∪ ({{0c}} ×k
V))) “k ℘1℘11c)) “k ℘1℘11c))) “k ℘1℘1℘1℘11c) “k ℘11c)) ∈
V |
57 | 1, 56 | eqeltri 2423 |
1
⊢ 1st
∈ V |