Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqb Structured version   Visualization version   GIF version

Theorem 2sqb 25202
 Description: The converse to 2sq 25200. (Contributed by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
2sqb (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
Distinct variable group:   𝑥,𝑦,𝑃

Proof of Theorem 2sqb
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2824 . . . 4 (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2)
2 prmz 15436 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
32ad3antrrr 766 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑃 ∈ ℤ)
4 simplrr 818 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑦 ∈ ℤ)
5 bezout 15307 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))
63, 4, 5syl2anc 694 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))
7 simplll 813 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
8 simpllr 815 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ))
9 simplr 807 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → 𝑃 = ((𝑥↑2) + (𝑦↑2)))
10 simprll 819 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → 𝑎 ∈ ℤ)
11 simprlr 820 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → 𝑏 ∈ ℤ)
12 simprr 811 . . . . . . . . . . 11 (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))
137, 8, 9, 10, 11, 122sqblem 25201 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)))) → (𝑃 mod 4) = 1)
1413expr 642 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)) → (𝑃 mod 4) = 1))
1514rexlimdvva 3067 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝑃 gcd 𝑦) = ((𝑃 · 𝑎) + (𝑦 · 𝑏)) → (𝑃 mod 4) = 1))
166, 15mpd 15 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑃 mod 4) = 1)
1716ex 449 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (𝑃 mod 4) = 1))
1817rexlimdvva 3067 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) → (𝑃 mod 4) = 1))
1918impancom 455 . . . 4 ((𝑃 ∈ ℙ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑃 ≠ 2 → (𝑃 mod 4) = 1))
201, 19syl5bir 233 . . 3 ((𝑃 ∈ ℙ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (¬ 𝑃 = 2 → (𝑃 mod 4) = 1))
2120orrd 392 . 2 ((𝑃 ∈ ℙ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑃 = 2 ∨ (𝑃 mod 4) = 1))
22 1z 11445 . . . . 5 1 ∈ ℤ
23 oveq1 6697 . . . . . . . . 9 (𝑥 = 1 → (𝑥↑2) = (1↑2))
24 sq1 12998 . . . . . . . . 9 (1↑2) = 1
2523, 24syl6eq 2701 . . . . . . . 8 (𝑥 = 1 → (𝑥↑2) = 1)
2625oveq1d 6705 . . . . . . 7 (𝑥 = 1 → ((𝑥↑2) + (𝑦↑2)) = (1 + (𝑦↑2)))
2726eqeq2d 2661 . . . . . 6 (𝑥 = 1 → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = (1 + (𝑦↑2))))
28 oveq1 6697 . . . . . . . . . 10 (𝑦 = 1 → (𝑦↑2) = (1↑2))
2928, 24syl6eq 2701 . . . . . . . . 9 (𝑦 = 1 → (𝑦↑2) = 1)
3029oveq2d 6706 . . . . . . . 8 (𝑦 = 1 → (1 + (𝑦↑2)) = (1 + 1))
31 1p1e2 11172 . . . . . . . 8 (1 + 1) = 2
3230, 31syl6eq 2701 . . . . . . 7 (𝑦 = 1 → (1 + (𝑦↑2)) = 2)
3332eqeq2d 2661 . . . . . 6 (𝑦 = 1 → (𝑃 = (1 + (𝑦↑2)) ↔ 𝑃 = 2))
3427, 33rspc2ev 3355 . . . . 5 ((1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 = 2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
3522, 22, 34mp3an12 1454 . . . 4 (𝑃 = 2 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
3635adantl 481 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 = 2) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
37 2sq 25200 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
3836, 37jaodan 843 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
3921, 38impbida 895 1 (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∃wrex 2942  (class class class)co 6690  1c1 9975   + caddc 9977   · cmul 9979  2c2 11108  4c4 11110  ℤcz 11415   mod cmo 12708  ↑cexp 12900   gcd cgcd 15263  ℙcprime 15432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-phi 15518  df-pc 15589  df-gz 15681  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-imas 16215  df-qus 16216  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-srg 18552  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-field 18798  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-nzr 19306  df-rlreg 19331  df-domn 19332  df-idom 19333  df-assa 19360  df-asp 19361  df-ascl 19362  df-psr 19404  df-mvr 19405  df-mpl 19406  df-opsr 19408  df-evls 19554  df-evl 19555  df-psr1 19598  df-vr1 19599  df-ply1 19600  df-coe1 19601  df-evl1 19729  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903  df-mdeg 23860  df-deg1 23861  df-mon1 23935  df-uc1p 23936  df-q1p 23937  df-r1p 23938  df-lgs 25065 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator