Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcm1n Structured version   Visualization version   GIF version

Theorem bcm1n 30518
Description: The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Thierry Arnoux, 9-Nov-2016.)
Assertion
Ref Expression
bcm1n ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))

Proof of Theorem bcm1n
StepHypRef Expression
1 bcp1n 13677 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → (((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))))
2 nnz 12005 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32zcnd 12089 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 484 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 1cnd 10636 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
64, 5npcand 11001 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
76oveq1d 7171 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1)C𝐾) = (𝑁C𝐾))
86oveq1d 7171 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) − 𝐾) = (𝑁𝐾))
96, 8oveq12d 7174 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾)) = (𝑁 / (𝑁𝐾)))
109oveq2d 7172 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
117, 10eqeq12d 2837 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((((𝑁 − 1) + 1)C𝐾) = (((𝑁 − 1)C𝐾) · (((𝑁 − 1) + 1) / (((𝑁 − 1) + 1) − 𝐾))) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
121, 11syl5ib 246 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ (0...(𝑁 − 1)) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
13123impia 1113 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
14133anidm13 1416 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾))))
15 elfznn0 13001 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℕ0)
1615adantr 483 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℕ0)
17 simpr 487 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
1817nnnn0d 11956 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
19 elfzelz 12909 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℤ)
2019adantr 483 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
2120zred 12088 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
222adantl 484 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
2322zred 12088 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
24 elfzle2 12912 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
2524adantr 483 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ≤ (𝑁 − 1))
26 zltlem1 12036 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2719, 2, 26syl2an 597 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾 < 𝑁𝐾 ≤ (𝑁 − 1)))
2825, 27mpbird 259 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < 𝑁)
2921, 23, 28ltled 10788 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾𝑁)
30 elfz2nn0 12999 . . . . . . . 8 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
3116, 18, 29, 30syl3anbrc 1339 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ (0...𝑁))
32 bcrpcl 13669 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
3331, 32syl 17 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℝ+)
3433rpcnd 12434 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℂ)
3519zcnd 12089 . . . . . . . 8 (𝐾 ∈ (0...(𝑁 − 1)) → 𝐾 ∈ ℂ)
3635adantr 483 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
374, 36subcld 10997 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℂ)
3836, 4negsubdi2d 11013 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) = (𝑁𝐾))
3921, 23resubcld 11068 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℝ)
4039recnd 10669 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ∈ ℂ)
414addid2d 10841 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (0 + 𝑁) = 𝑁)
4228, 41breqtrrd 5094 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝐾 < (0 + 𝑁))
43 0red 10644 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℝ)
4421, 23, 43ltsubaddd 11236 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝐾𝑁) < 0 ↔ 𝐾 < (0 + 𝑁)))
4542, 44mpbird 259 . . . . . . . . 9 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) < 0)
4645lt0ne0d 11205 . . . . . . . 8 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝐾𝑁) ≠ 0)
4740, 46negne0d 10995 . . . . . . 7 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → -(𝐾𝑁) ≠ 0)
4838, 47eqnetrrd 3084 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁𝐾) ≠ 0)
494, 37, 48divcld 11416 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑁𝐾)) ∈ ℂ)
50 bcrpcl 13669 . . . . . . 7 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5150adantr 483 . . . . . 6 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℝ+)
5251rpcnne0d 12441 . . . . 5 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0))
53 divmul2 11302 . . . . 5 (((𝑁C𝐾) ∈ ℂ ∧ (𝑁 / (𝑁𝐾)) ∈ ℂ ∧ (((𝑁 − 1)C𝐾) ∈ ℂ ∧ ((𝑁 − 1)C𝐾) ≠ 0)) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5434, 49, 52, 53syl3anc 1367 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)) ↔ (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁𝐾)))))
5514, 54mpbird 259 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁C𝐾) / ((𝑁 − 1)C𝐾)) = (𝑁 / (𝑁𝐾)))
5655oveq2d 7172 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (1 / (𝑁 / (𝑁𝐾))))
5751rpcnd 12434 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ∈ ℂ)
58 bccl2 13684 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ)
5931, 58syl 17 . . . 4 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ∈ ℕ)
6059nnne0d 11688 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (𝑁C𝐾) ≠ 0)
61 bccl2 13684 . . . . 5 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ∈ ℕ)
6261nnne0d 11688 . . . 4 (𝐾 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1)C𝐾) ≠ 0)
6362adantr 483 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1)C𝐾) ≠ 0)
6434, 57, 60, 63recdivd 11433 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / ((𝑁C𝐾) / ((𝑁 − 1)C𝐾))) = (((𝑁 − 1)C𝐾) / (𝑁C𝐾)))
6517nnne0d 11688 . . 3 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
664, 37, 65, 48recdivd 11433 . 2 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (1 / (𝑁 / (𝑁𝐾))) = ((𝑁𝐾) / 𝑁))
6756, 64, 663eqtr3d 2864 1 ((𝐾 ∈ (0...(𝑁 − 1)) ∧ 𝑁 ∈ ℕ) → (((𝑁 − 1)C𝐾) / (𝑁C𝐾)) = ((𝑁𝐾) / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  0cn0 11898  cz 11982  +crp 12390  ...cfz 12893  Ccbc 13663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-fac 13635  df-bc 13664
This theorem is referenced by:  ballotlem2  31746
  Copyright terms: Public domain W3C validator