Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnllysconn Structured version   Visualization version   GIF version

Theorem cnllysconn 31201
 Description: The topology of the complex numbers is locally simply connected. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
cnllysconn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
cnllysconn 𝐽 ∈ Locally SConn

Proof of Theorem cnllysconn
Dummy variables 𝑢 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnllysconn.j . . 3 𝐽 = (TopOpen‘ℂfld)
21cnfldtop 22568 . 2 𝐽 ∈ Top
3 cnxmet 22557 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
41cnfldtopn 22566 . . . . . 6 𝐽 = (MetOpen‘(abs ∘ − ))
54mopni2 22279 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥𝐽𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
63, 5mp3an1 1409 . . . 4 ((𝑥𝐽𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
73a1i 11 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
81cnfldtopon 22567 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
9 simpll 789 . . . . . . . . 9 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥𝐽)
10 toponss 20712 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑥𝐽) → 𝑥 ⊆ ℂ)
118, 9, 10sylancr 694 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑥 ⊆ ℂ)
12 simplr 791 . . . . . . . 8 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦𝑥)
1311, 12sseldd 3596 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ ℂ)
14 rpxr 11825 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
1514ad2antrl 763 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ*)
164blopn 22286 . . . . . . 7 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
177, 13, 15, 16syl3anc 1324 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
18 simprr 795 . . . . . . 7 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
19 vex 3198 . . . . . . . 8 𝑥 ∈ V
2019elpw2 4819 . . . . . . 7 ((𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥 ↔ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)
2118, 20sylibr 224 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ 𝒫 𝑥)
2217, 21elind 3790 . . . . 5 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥))
23 simprl 793 . . . . . 6 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑟 ∈ ℝ+)
24 blcntr 22199 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟))
257, 13, 23, 24syl3anc 1324 . . . . 5 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟))
26 eqid 2620 . . . . . . 7 (𝑦(ball‘(abs ∘ − ))𝑟) = (𝑦(ball‘(abs ∘ − ))𝑟)
27 eqid 2620 . . . . . . 7 (𝐽t (𝑦(ball‘(abs ∘ − ))𝑟)) = (𝐽t (𝑦(ball‘(abs ∘ − ))𝑟))
281, 26, 27blsconn 31200 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐽t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)
2913, 15, 28syl2anc 692 . . . . 5 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → (𝐽t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)
30 eleq2 2688 . . . . . . 7 (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝑦𝑢𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟)))
31 oveq2 6643 . . . . . . . 8 (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → (𝐽t 𝑢) = (𝐽t (𝑦(ball‘(abs ∘ − ))𝑟)))
3231eleq1d 2684 . . . . . . 7 (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝐽t 𝑢) ∈ SConn ↔ (𝐽t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn))
3330, 32anbi12d 746 . . . . . 6 (𝑢 = (𝑦(ball‘(abs ∘ − ))𝑟) → ((𝑦𝑢 ∧ (𝐽t 𝑢) ∈ SConn) ↔ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)))
3433rspcev 3304 . . . . 5 (((𝑦(ball‘(abs ∘ − ))𝑟) ∈ (𝐽 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ (𝑦(ball‘(abs ∘ − ))𝑟) ∧ (𝐽t (𝑦(ball‘(abs ∘ − ))𝑟)) ∈ SConn)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ SConn))
3522, 25, 29, 34syl12anc 1322 . . . 4 (((𝑥𝐽𝑦𝑥) ∧ (𝑟 ∈ ℝ+ ∧ (𝑦(ball‘(abs ∘ − ))𝑟) ⊆ 𝑥)) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ SConn))
366, 35rexlimddv 3031 . . 3 ((𝑥𝐽𝑦𝑥) → ∃𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ SConn))
3736rgen2 2972 . 2 𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ SConn)
38 islly 21252 . 2 (𝐽 ∈ Locally SConn ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑢 ∈ (𝐽 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝐽t 𝑢) ∈ SConn)))
392, 37, 38mpbir2an 954 1 𝐽 ∈ Locally SConn
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 384   = wceq 1481   ∈ wcel 1988  ∀wral 2909  ∃wrex 2910   ∩ cin 3566   ⊆ wss 3567  𝒫 cpw 4149   ∘ ccom 5108  ‘cfv 5876  (class class class)co 6635  ℂcc 9919  ℝ*cxr 10058   − cmin 10251  ℝ+crp 11817  abscabs 13955   ↾t crest 16062  TopOpenctopn 16063  ∞Metcxmt 19712  ballcbl 19714  ℂfldccnfld 19727  Topctop 20679  TopOnctopon 20696  Locally clly 21248  SConncsconn 31176 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-icc 12167  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cn 21012  df-cnp 21013  df-lly 21250  df-tx 21346  df-hmeo 21539  df-xms 22106  df-ms 22107  df-tms 22108  df-ii 22661  df-htpy 22750  df-phtpy 22751  df-phtpc 22772  df-pconn 31177  df-sconn 31178 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator