MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul3 Structured version   Visualization version   GIF version

Theorem coe1mul3 24050
Description: The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul3.s 𝑌 = (Poly1𝑅)
coe1mul3.t = (.r𝑌)
coe1mul3.u · = (.r𝑅)
coe1mul3.b 𝐵 = (Base‘𝑌)
coe1mul3.d 𝐷 = ( deg1𝑅)
coe1mul3.r (𝜑𝑅 ∈ Ring)
coe1mul3.f1 (𝜑𝐹𝐵)
coe1mul3.f2 (𝜑𝐼 ∈ ℕ0)
coe1mul3.f3 (𝜑 → (𝐷𝐹) ≤ 𝐼)
coe1mul3.g1 (𝜑𝐺𝐵)
coe1mul3.g2 (𝜑𝐽 ∈ ℕ0)
coe1mul3.g3 (𝜑 → (𝐷𝐺) ≤ 𝐽)
Assertion
Ref Expression
coe1mul3 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))

Proof of Theorem coe1mul3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1mul3.r . . . 4 (𝜑𝑅 ∈ Ring)
2 coe1mul3.f1 . . . 4 (𝜑𝐹𝐵)
3 coe1mul3.g1 . . . 4 (𝜑𝐺𝐵)
4 coe1mul3.s . . . . 5 𝑌 = (Poly1𝑅)
5 coe1mul3.t . . . . 5 = (.r𝑌)
6 coe1mul3.u . . . . 5 · = (.r𝑅)
7 coe1mul3.b . . . . 5 𝐵 = (Base‘𝑌)
84, 5, 6, 7coe1mul 19834 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
91, 2, 3, 8syl3anc 1473 . . 3 (𝜑 → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
109fveq1d 6346 . 2 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)))
11 coe1mul3.f2 . . . 4 (𝜑𝐼 ∈ ℕ0)
12 coe1mul3.g2 . . . 4 (𝜑𝐽 ∈ ℕ0)
1311, 12nn0addcld 11539 . . 3 (𝜑 → (𝐼 + 𝐽) ∈ ℕ0)
14 oveq2 6813 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (0...𝑥) = (0...(𝐼 + 𝐽)))
15 oveq1 6812 . . . . . . . 8 (𝑥 = (𝐼 + 𝐽) → (𝑥𝑦) = ((𝐼 + 𝐽) − 𝑦))
1615fveq2d 6348 . . . . . . 7 (𝑥 = (𝐼 + 𝐽) → ((coe1𝐺)‘(𝑥𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))
1716oveq2d 6821 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))) = (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
1814, 17mpteq12dv 4877 . . . . 5 (𝑥 = (𝐼 + 𝐽) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))))
1918oveq2d 6821 . . . 4 (𝑥 = (𝐼 + 𝐽) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
20 eqid 2752 . . . 4 (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))
21 ovex 6833 . . . 4 (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) ∈ V
2219, 20, 21fvmpt 6436 . . 3 ((𝐼 + 𝐽) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
2313, 22syl 17 . 2 (𝜑 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
24 eqid 2752 . . . 4 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2752 . . . 4 (0g𝑅) = (0g𝑅)
26 ringmnd 18748 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
271, 26syl 17 . . . 4 (𝜑𝑅 ∈ Mnd)
28 ovexd 6835 . . . 4 (𝜑 → (0...(𝐼 + 𝐽)) ∈ V)
2911nn0red 11536 . . . . . 6 (𝜑𝐼 ∈ ℝ)
30 nn0addge1 11523 . . . . . 6 ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℕ0) → 𝐼 ≤ (𝐼 + 𝐽))
3129, 12, 30syl2anc 696 . . . . 5 (𝜑𝐼 ≤ (𝐼 + 𝐽))
32 fznn0 12617 . . . . . 6 ((𝐼 + 𝐽) ∈ ℕ0 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3313, 32syl 17 . . . . 5 (𝜑 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3411, 31, 33mpbir2and 995 . . . 4 (𝜑𝐼 ∈ (0...(𝐼 + 𝐽)))
351adantr 472 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑅 ∈ Ring)
36 eqid 2752 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
3736, 7, 4, 24coe1f 19775 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
382, 37syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
39 elfznn0 12618 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → 𝑦 ∈ ℕ0)
40 ffvelrn 6512 . . . . . . 7 (((coe1𝐹):ℕ0⟶(Base‘𝑅) ∧ 𝑦 ∈ ℕ0) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
4138, 39, 40syl2an 495 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
42 eqid 2752 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
4342, 7, 4, 24coe1f 19775 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
443, 43syl 17 . . . . . . 7 (𝜑 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
45 fznn0sub 12558 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
46 ffvelrn 6512 . . . . . . 7 (((coe1𝐺):ℕ0⟶(Base‘𝑅) ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4744, 45, 46syl2an 495 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4824, 6ringcl 18753 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
4935, 41, 47, 48syl3anc 1473 . . . . 5 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
50 eqid 2752 . . . . 5 (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
5149, 50fmptd 6540 . . . 4 (𝜑 → (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))):(0...(𝐼 + 𝐽))⟶(Base‘𝑅))
52 eldifsn 4454 . . . . . 6 (𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼}) ↔ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼))
5339adantl 473 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℕ0)
5453nn0red 11536 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ)
5529adantr 472 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐼 ∈ ℝ)
5654, 55lttri2d 10360 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 ↔ (𝑦 < 𝐼𝐼 < 𝑦)))
573ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐺𝐵)
5845adantl 473 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
5958adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
60 coe1mul3.d . . . . . . . . . . . . . . . . 17 𝐷 = ( deg1𝑅)
6160, 4, 7deg1xrcl 24033 . . . . . . . . . . . . . . . 16 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
623, 61syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ∈ ℝ*)
6362ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ∈ ℝ*)
6412nn0red 11536 . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ ℝ)
6564rexrd 10273 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℝ*)
6665ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 ∈ ℝ*)
6713nn0red 11536 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 𝐽) ∈ ℝ)
6867adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝐼 + 𝐽) ∈ ℝ)
6968, 54resubcld 10642 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ)
7069rexrd 10273 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
7170adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
72 coe1mul3.g3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ≤ 𝐽)
7372ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ≤ 𝐽)
7464adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐽 ∈ ℝ)
7554, 55, 74ltadd1d 10804 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ (𝑦 + 𝐽) < (𝐼 + 𝐽)))
7654, 74, 68ltaddsub2d 10812 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 + 𝐽) < (𝐼 + 𝐽) ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7775, 76bitrd 268 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7877biimpa 502 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 < ((𝐼 + 𝐽) − 𝑦))
7963, 66, 71, 73, 78xrlelttrd 12176 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦))
8060, 4, 7, 25, 42deg1lt 24048 . . . . . . . . . . . . 13 ((𝐺𝐵 ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0 ∧ (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦)) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
8157, 59, 79, 80syl3anc 1473 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
8281oveq2d 6821 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝑦) · (0g𝑅)))
8324, 6, 25ringrz 18780 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8435, 41, 83syl2anc 696 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8584adantr 472 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8682, 85eqtrd 2786 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
872ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐹𝐵)
8853adantr 472 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℕ0)
8960, 4, 7deg1xrcl 24033 . . . . . . . . . . . . . . . 16 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
902, 89syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ∈ ℝ*)
9190ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ∈ ℝ*)
9229rexrd 10273 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ*)
9392ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 ∈ ℝ*)
9454rexrd 10273 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ*)
9594adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℝ*)
96 coe1mul3.f3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ≤ 𝐼)
9796ad2antrr 764 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ≤ 𝐼)
98 simpr 479 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 < 𝑦)
9991, 93, 95, 97, 98xrlelttrd 12176 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) < 𝑦)
10060, 4, 7, 25, 36deg1lt 24048 . . . . . . . . . . . . 13 ((𝐹𝐵𝑦 ∈ ℕ0 ∧ (𝐷𝐹) < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
10187, 88, 99, 100syl3anc 1473 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
102101oveq1d 6820 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
10324, 6, 25ringlz 18779 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10435, 47, 103syl2anc 696 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
105104adantr 472 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
106102, 105eqtrd 2786 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10786, 106jaodan 861 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ (𝑦 < 𝐼𝐼 < 𝑦)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
108107ex 449 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 < 𝐼𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
10956, 108sylbid 230 . . . . . . 7 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
110109impr 650 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
11152, 110sylan2b 493 . . . . 5 ((𝜑𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼})) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
112111, 28suppss2 7490 . . . 4 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) supp (0g𝑅)) ⊆ {𝐼})
11324, 25, 27, 28, 34, 51, 112gsumpt 18553 . . 3 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼))
114 fveq2 6344 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐹)‘𝑦) = ((coe1𝐹)‘𝐼))
115 oveq2 6813 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼 + 𝐽) − 𝑦) = ((𝐼 + 𝐽) − 𝐼))
116115fveq2d 6348 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)))
117114, 116oveq12d 6823 . . . . 5 (𝑦 = 𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
118 ovex 6833 . . . . 5 (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) ∈ V
119117, 50, 118fvmpt 6436 . . . 4 (𝐼 ∈ (0...(𝐼 + 𝐽)) → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
12034, 119syl 17 . . 3 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
12111nn0cnd 11537 . . . . . 6 (𝜑𝐼 ∈ ℂ)
12212nn0cnd 11537 . . . . . 6 (𝜑𝐽 ∈ ℂ)
123121, 122pncan2d 10578 . . . . 5 (𝜑 → ((𝐼 + 𝐽) − 𝐼) = 𝐽)
124123fveq2d 6348 . . . 4 (𝜑 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)) = ((coe1𝐺)‘𝐽))
125124oveq2d 6821 . . 3 (𝜑 → (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
126113, 120, 1253eqtrd 2790 . 2 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
12710, 23, 1263eqtrd 2790 1 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1624  wcel 2131  wne 2924  Vcvv 3332  cdif 3704  {csn 4313   class class class wbr 4796  cmpt 4873  wf 6037  cfv 6041  (class class class)co 6805  cr 10119  0cc0 10120   + caddc 10123  *cxr 10257   < clt 10258  cle 10259  cmin 10450  0cn0 11476  ...cfz 12511  Basecbs 16051  .rcmulr 16136  0gc0g 16294   Σg cgsu 16295  Mndcmnd 17487  Ringcrg 18739  Poly1cpl1 19741  coe1cco1 19742   deg1 cdg1 24005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-ofr 7055  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-fzo 12652  df-seq 12988  df-hash 13304  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-0g 16296  df-gsum 16297  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-submnd 17529  df-grp 17618  df-minusg 17619  df-mulg 17734  df-ghm 17851  df-cntz 17942  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-cring 18742  df-psr 19550  df-mpl 19552  df-opsr 19554  df-psr1 19744  df-ply1 19746  df-coe1 19747  df-cnfld 19941  df-mdeg 24006  df-deg1 24007
This theorem is referenced by:  coe1mul4  24051
  Copyright terms: Public domain W3C validator