MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul3 Structured version   Visualization version   GIF version

Theorem coe1mul3 23763
Description: The coefficient vector of multiplication in the univariate polynomial ring, at indices high enough that at most one component can be active in the sum. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul3.s 𝑌 = (Poly1𝑅)
coe1mul3.t = (.r𝑌)
coe1mul3.u · = (.r𝑅)
coe1mul3.b 𝐵 = (Base‘𝑌)
coe1mul3.d 𝐷 = ( deg1𝑅)
coe1mul3.r (𝜑𝑅 ∈ Ring)
coe1mul3.f1 (𝜑𝐹𝐵)
coe1mul3.f2 (𝜑𝐼 ∈ ℕ0)
coe1mul3.f3 (𝜑 → (𝐷𝐹) ≤ 𝐼)
coe1mul3.g1 (𝜑𝐺𝐵)
coe1mul3.g2 (𝜑𝐽 ∈ ℕ0)
coe1mul3.g3 (𝜑 → (𝐷𝐺) ≤ 𝐽)
Assertion
Ref Expression
coe1mul3 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))

Proof of Theorem coe1mul3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1mul3.r . . . 4 (𝜑𝑅 ∈ Ring)
2 coe1mul3.f1 . . . 4 (𝜑𝐹𝐵)
3 coe1mul3.g1 . . . 4 (𝜑𝐺𝐵)
4 coe1mul3.s . . . . 5 𝑌 = (Poly1𝑅)
5 coe1mul3.t . . . . 5 = (.r𝑌)
6 coe1mul3.u . . . . 5 · = (.r𝑅)
7 coe1mul3.b . . . . 5 𝐵 = (Base‘𝑌)
84, 5, 6, 7coe1mul 19559 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
91, 2, 3, 8syl3anc 1323 . . 3 (𝜑 → (coe1‘(𝐹 𝐺)) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))))
109fveq1d 6150 . 2 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)))
11 coe1mul3.f2 . . . 4 (𝜑𝐼 ∈ ℕ0)
12 coe1mul3.g2 . . . 4 (𝜑𝐽 ∈ ℕ0)
1311, 12nn0addcld 11299 . . 3 (𝜑 → (𝐼 + 𝐽) ∈ ℕ0)
14 oveq2 6612 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (0...𝑥) = (0...(𝐼 + 𝐽)))
15 oveq1 6611 . . . . . . . 8 (𝑥 = (𝐼 + 𝐽) → (𝑥𝑦) = ((𝐼 + 𝐽) − 𝑦))
1615fveq2d 6152 . . . . . . 7 (𝑥 = (𝐼 + 𝐽) → ((coe1𝐺)‘(𝑥𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))
1716oveq2d 6620 . . . . . 6 (𝑥 = (𝐼 + 𝐽) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))) = (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
1814, 17mpteq12dv 4693 . . . . 5 (𝑥 = (𝐼 + 𝐽) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))))
1918oveq2d 6620 . . . 4 (𝑥 = (𝐼 + 𝐽) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
20 eqid 2621 . . . 4 (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))
21 ovex 6632 . . . 4 (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) ∈ V
2219, 20, 21fvmpt 6239 . . 3 ((𝐼 + 𝐽) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
2313, 22syl 17 . 2 (𝜑 → ((𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘(𝑥𝑦))))))‘(𝐼 + 𝐽)) = (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))))
24 eqid 2621 . . . 4 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2621 . . . 4 (0g𝑅) = (0g𝑅)
26 ringmnd 18477 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
271, 26syl 17 . . . 4 (𝜑𝑅 ∈ Mnd)
28 ovex 6632 . . . . 5 (0...(𝐼 + 𝐽)) ∈ V
2928a1i 11 . . . 4 (𝜑 → (0...(𝐼 + 𝐽)) ∈ V)
3011nn0red 11296 . . . . . 6 (𝜑𝐼 ∈ ℝ)
31 nn0addge1 11283 . . . . . 6 ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℕ0) → 𝐼 ≤ (𝐼 + 𝐽))
3230, 12, 31syl2anc 692 . . . . 5 (𝜑𝐼 ≤ (𝐼 + 𝐽))
33 fznn0 12373 . . . . . 6 ((𝐼 + 𝐽) ∈ ℕ0 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3413, 33syl 17 . . . . 5 (𝜑 → (𝐼 ∈ (0...(𝐼 + 𝐽)) ↔ (𝐼 ∈ ℕ0𝐼 ≤ (𝐼 + 𝐽))))
3511, 32, 34mpbir2and 956 . . . 4 (𝜑𝐼 ∈ (0...(𝐼 + 𝐽)))
361adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑅 ∈ Ring)
37 eqid 2621 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
3837, 7, 4, 24coe1f 19500 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
392, 38syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
40 elfznn0 12374 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → 𝑦 ∈ ℕ0)
41 ffvelrn 6313 . . . . . . 7 (((coe1𝐹):ℕ0⟶(Base‘𝑅) ∧ 𝑦 ∈ ℕ0) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
4239, 40, 41syl2an 494 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅))
43 eqid 2621 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
4443, 7, 4, 24coe1f 19500 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
453, 44syl 17 . . . . . . 7 (𝜑 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
46 fznn0sub 12315 . . . . . . 7 (𝑦 ∈ (0...(𝐼 + 𝐽)) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
47 ffvelrn 6313 . . . . . . 7 (((coe1𝐺):ℕ0⟶(Base‘𝑅) ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4845, 46, 47syl2an 494 . . . . . 6 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅))
4924, 6ringcl 18482 . . . . . 6 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
5036, 42, 48, 49syl3anc 1323 . . . . 5 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) ∈ (Base‘𝑅))
51 eqid 2621 . . . . 5 (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) = (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
5250, 51fmptd 6340 . . . 4 (𝜑 → (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))):(0...(𝐼 + 𝐽))⟶(Base‘𝑅))
53 eldifsn 4287 . . . . . 6 (𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼}) ↔ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼))
5440adantl 482 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℕ0)
5554nn0red 11296 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ)
5630adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐼 ∈ ℝ)
5755, 56lttri2d 10120 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 ↔ (𝑦 < 𝐼𝐼 < 𝑦)))
583ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐺𝐵)
5946adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
6059adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0)
61 coe1mul3.d . . . . . . . . . . . . . . . . 17 𝐷 = ( deg1𝑅)
6261, 4, 7deg1xrcl 23746 . . . . . . . . . . . . . . . 16 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
633, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ∈ ℝ*)
6463ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ∈ ℝ*)
6512nn0red 11296 . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ ℝ)
6665rexrd 10033 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℝ*)
6766ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 ∈ ℝ*)
6813nn0red 11296 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼 + 𝐽) ∈ ℝ)
6968adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝐼 + 𝐽) ∈ ℝ)
7069, 55resubcld 10402 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ)
7170rexrd 10033 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
7271adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((𝐼 + 𝐽) − 𝑦) ∈ ℝ*)
73 coe1mul3.g3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐺) ≤ 𝐽)
7473ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) ≤ 𝐽)
7565adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝐽 ∈ ℝ)
7655, 56, 75ltadd1d 10564 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼 ↔ (𝑦 + 𝐽) < (𝐼 + 𝐽)))
7755, 75, 69ltaddsub2d 10572 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 + 𝐽) < (𝐼 + 𝐽) ↔ 𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7876, 77bitrd 268 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦 < 𝐼𝐽 < ((𝐼 + 𝐽) − 𝑦)))
7978biimpa 501 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → 𝐽 < ((𝐼 + 𝐽) − 𝑦))
8064, 67, 72, 74, 79xrlelttrd 11935 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦))
8161, 4, 7, 25, 43deg1lt 23761 . . . . . . . . . . . . 13 ((𝐺𝐵 ∧ ((𝐼 + 𝐽) − 𝑦) ∈ ℕ0 ∧ (𝐷𝐺) < ((𝐼 + 𝐽) − 𝑦)) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
8258, 60, 80, 81syl3anc 1323 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = (0g𝑅))
8382oveq2d 6620 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝑦) · (0g𝑅)))
8424, 6, 25ringrz 18509 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑦) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8536, 42, 84syl2anc 692 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8685adantr 481 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · (0g𝑅)) = (0g𝑅))
8783, 86eqtrd 2655 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝑦 < 𝐼) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
882ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐹𝐵)
8954adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℕ0)
9061, 4, 7deg1xrcl 23746 . . . . . . . . . . . . . . . 16 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
912, 90syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ∈ ℝ*)
9291ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ∈ ℝ*)
9330rexrd 10033 . . . . . . . . . . . . . . 15 (𝜑𝐼 ∈ ℝ*)
9493ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 ∈ ℝ*)
9555rexrd 10033 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → 𝑦 ∈ ℝ*)
9695adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝑦 ∈ ℝ*)
97 coe1mul3.f3 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷𝐹) ≤ 𝐼)
9897ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) ≤ 𝐼)
99 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → 𝐼 < 𝑦)
10092, 94, 96, 98, 99xrlelttrd 11935 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (𝐷𝐹) < 𝑦)
10161, 4, 7, 25, 37deg1lt 23761 . . . . . . . . . . . . 13 ((𝐹𝐵𝑦 ∈ ℕ0 ∧ (𝐷𝐹) < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
10288, 89, 100, 101syl3anc 1323 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((coe1𝐹)‘𝑦) = (0g𝑅))
103102oveq1d 6619 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))
10424, 6, 25ringlz 18508 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) ∈ (Base‘𝑅)) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10536, 48, 104syl2anc 692 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
106105adantr 481 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → ((0g𝑅) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
107103, 106eqtrd 2655 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ 𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
10887, 107jaodan 825 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) ∧ (𝑦 < 𝐼𝐼 < 𝑦)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
109108ex 450 . . . . . . . 8 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → ((𝑦 < 𝐼𝐼 < 𝑦) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
11057, 109sylbid 230 . . . . . . 7 ((𝜑𝑦 ∈ (0...(𝐼 + 𝐽))) → (𝑦𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅)))
111110impr 648 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (0...(𝐼 + 𝐽)) ∧ 𝑦𝐼)) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
11253, 111sylan2b 492 . . . . 5 ((𝜑𝑦 ∈ ((0...(𝐼 + 𝐽)) ∖ {𝐼})) → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (0g𝑅))
113112, 29suppss2 7274 . . . 4 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)))) supp (0g𝑅)) ⊆ {𝐼})
11424, 25, 27, 29, 35, 52, 113gsumpt 18282 . . 3 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼))
115 fveq2 6148 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐹)‘𝑦) = ((coe1𝐹)‘𝐼))
116 oveq2 6612 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼 + 𝐽) − 𝑦) = ((𝐼 + 𝐽) − 𝐼))
117116fveq2d 6152 . . . . . 6 (𝑦 = 𝐼 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦)) = ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)))
118115, 117oveq12d 6622 . . . . 5 (𝑦 = 𝐼 → (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
119 ovex 6632 . . . . 5 (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) ∈ V
120118, 51, 119fvmpt 6239 . . . 4 (𝐼 ∈ (0...(𝐼 + 𝐽)) → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
12135, 120syl 17 . . 3 (𝜑 → ((𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))‘𝐼) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))))
12211nn0cnd 11297 . . . . . 6 (𝜑𝐼 ∈ ℂ)
12312nn0cnd 11297 . . . . . 6 (𝜑𝐽 ∈ ℂ)
124122, 123pncan2d 10338 . . . . 5 (𝜑 → ((𝐼 + 𝐽) − 𝐼) = 𝐽)
125124fveq2d 6152 . . . 4 (𝜑 → ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼)) = ((coe1𝐺)‘𝐽))
126125oveq2d 6620 . . 3 (𝜑 → (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝐼))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
127114, 121, 1263eqtrd 2659 . 2 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...(𝐼 + 𝐽)) ↦ (((coe1𝐹)‘𝑦) · ((coe1𝐺)‘((𝐼 + 𝐽) − 𝑦))))) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
12810, 23, 1273eqtrd 2659 1 (𝜑 → ((coe1‘(𝐹 𝐺))‘(𝐼 + 𝐽)) = (((coe1𝐹)‘𝐼) · ((coe1𝐺)‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  cdif 3552  {csn 4148   class class class wbr 4613  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880   + caddc 9883  *cxr 10017   < clt 10018  cle 10019  cmin 10210  0cn0 11236  ...cfz 12268  Basecbs 15781  .rcmulr 15863  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  Ringcrg 18468  Poly1cpl1 19466  coe1cco1 19467   deg1 cdg1 23718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-mulg 17462  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-psr 19275  df-mpl 19277  df-opsr 19279  df-psr1 19469  df-ply1 19471  df-coe1 19472  df-cnfld 19666  df-mdeg 23719  df-deg1 23720
This theorem is referenced by:  coe1mul4  23764
  Copyright terms: Public domain W3C validator