MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpnres Structured version   Visualization version   GIF version

Theorem cpnres 23891
Description: The restriction of a Cn function is Cn. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
cpnres ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹𝑆) ∈ ((Cn𝑆)‘𝑁))

Proof of Theorem cpnres
StepHypRef Expression
1 simpl 474 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝑆 ∈ {ℝ, ℂ})
2 simpr 479 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝐹 ∈ ((Cn‘ℂ)‘𝑁))
3 ssid 3757 . . . . . 6 ℂ ⊆ ℂ
4 elfvdm 6373 . . . . . . . 8 (𝐹 ∈ ((Cn‘ℂ)‘𝑁) → 𝑁 ∈ dom (Cn‘ℂ))
54adantl 473 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝑁 ∈ dom (Cn‘ℂ))
6 fncpn 23887 . . . . . . . . 9 (ℂ ⊆ ℂ → (Cn‘ℂ) Fn ℕ0)
73, 6ax-mp 5 . . . . . . . 8 (Cn‘ℂ) Fn ℕ0
8 fndm 6143 . . . . . . . 8 ((Cn‘ℂ) Fn ℕ0 → dom (Cn‘ℂ) = ℕ0)
97, 8mp1i 13 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → dom (Cn‘ℂ) = ℕ0)
105, 9eleqtrd 2833 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝑁 ∈ ℕ0)
11 elcpn 23888 . . . . . 6 ((ℂ ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹 ∈ ((Cn‘ℂ)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))
123, 10, 11sylancr 698 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹 ∈ ((Cn‘ℂ)‘𝑁) ↔ (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))))
132, 12mpbid 222 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹 ∈ (ℂ ↑pm ℂ) ∧ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ)))
1413simpld 477 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝐹 ∈ (ℂ ↑pm ℂ))
15 pmresg 8043 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
161, 14, 15syl2anc 696 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
1713simprd 482 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ))
18 cncff 22889 . . . . . 6 (((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ) → ((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ)
1917, 18syl 17 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ)
20 fdm 6204 . . . . 5 (((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ → dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹)
2119, 20syl 17 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹)
22 dvnres 23885 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) ∧ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
231, 14, 10, 21, 22syl31anc 1476 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
24 resres 5559 . . . . . . 7 ((((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ↾ dom 𝐹) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹))
25 rescom 5573 . . . . . . 7 ((((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ↾ dom 𝐹) = ((((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) ↾ 𝑆)
2624, 25eqtr3i 2776 . . . . . 6 (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) = ((((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) ↾ 𝑆)
27 ffn 6198 . . . . . . . 8 (((ℂ D𝑛 𝐹)‘𝑁):dom 𝐹⟶ℂ → ((ℂ D𝑛 𝐹)‘𝑁) Fn dom 𝐹)
28 fnresdm 6153 . . . . . . . 8 (((ℂ D𝑛 𝐹)‘𝑁) Fn dom 𝐹 → (((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) = ((ℂ D𝑛 𝐹)‘𝑁))
2919, 27, 283syl 18 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) = ((ℂ D𝑛 𝐹)‘𝑁))
3029reseq1d 5542 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((((ℂ D𝑛 𝐹)‘𝑁) ↾ dom 𝐹) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
3126, 30syl5eq 2798 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
32 inss2 3969 . . . . . 6 (𝑆 ∩ dom 𝐹) ⊆ dom 𝐹
33 rescncf 22893 . . . . . 6 ((𝑆 ∩ dom 𝐹) ⊆ dom 𝐹 → (((ℂ D𝑛 𝐹)‘𝑁) ∈ (dom 𝐹cn→ℂ) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) ∈ ((𝑆 ∩ dom 𝐹)–cn→ℂ)))
3432, 17, 33mpsyl 68 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ (𝑆 ∩ dom 𝐹)) ∈ ((𝑆 ∩ dom 𝐹)–cn→ℂ))
3531, 34eqeltrrd 2832 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ∈ ((𝑆 ∩ dom 𝐹)–cn→ℂ))
36 dmres 5569 . . . . 5 dom (𝐹𝑆) = (𝑆 ∩ dom 𝐹)
3736oveq1i 6815 . . . 4 (dom (𝐹𝑆)–cn→ℂ) = ((𝑆 ∩ dom 𝐹)–cn→ℂ)
3835, 37syl6eleqr 2842 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆) ∈ (dom (𝐹𝑆)–cn→ℂ))
3923, 38eqeltrd 2831 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) ∈ (dom (𝐹𝑆)–cn→ℂ))
40 recnprss 23859 . . . 4 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
4140adantr 472 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → 𝑆 ⊆ ℂ)
42 elcpn 23888 . . 3 ((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐹𝑆) ∈ ((Cn𝑆)‘𝑁) ↔ ((𝐹𝑆) ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) ∈ (dom (𝐹𝑆)–cn→ℂ))))
4341, 10, 42syl2anc 696 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → ((𝐹𝑆) ∈ ((Cn𝑆)‘𝑁) ↔ ((𝐹𝑆) ∈ (ℂ ↑pm 𝑆) ∧ ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) ∈ (dom (𝐹𝑆)–cn→ℂ))))
4416, 39, 43mpbir2and 995 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ ((Cn‘ℂ)‘𝑁)) → (𝐹𝑆) ∈ ((Cn𝑆)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  cin 3706  wss 3707  {cpr 4315  dom cdm 5258  cres 5260   Fn wfn 6036  wf 6037  cfv 6041  (class class class)co 6805  pm cpm 8016  cc 10118  cr 10119  0cn0 11476  cnccncf 22872   D𝑛 cdvn 23819  Cnccpn 23820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fi 8474  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-icc 12367  df-fz 12512  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-plusg 16148  df-mulr 16149  df-starv 16150  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-rest 16277  df-topn 16278  df-topgen 16298  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-fbas 19937  df-fg 19938  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-lp 21134  df-perf 21135  df-cnp 21226  df-haus 21313  df-fil 21843  df-fm 21935  df-flim 21936  df-flf 21937  df-xms 22318  df-ms 22319  df-cncf 22874  df-limc 23821  df-dv 23822  df-dvn 23823  df-cpn 23824
This theorem is referenced by:  aalioulem3  24280
  Copyright terms: Public domain W3C validator