![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrptlem3 | Structured version Visualization version GIF version |
Description: Lemma for dchrpt 25191. (Contributed by Mario Carneiro, 28-Apr-2016.) |
Ref | Expression |
---|---|
dchrpt.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrpt.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrpt.d | ⊢ 𝐷 = (Base‘𝐺) |
dchrpt.b | ⊢ 𝐵 = (Base‘𝑍) |
dchrpt.1 | ⊢ 1 = (1r‘𝑍) |
dchrpt.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
dchrpt.n1 | ⊢ (𝜑 → 𝐴 ≠ 1 ) |
dchrpt.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchrpt.h | ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) |
dchrpt.m | ⊢ · = (.g‘𝐻) |
dchrpt.s | ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) |
dchrpt.au | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
dchrpt.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) |
dchrpt.2 | ⊢ (𝜑 → 𝐻dom DProd 𝑆) |
dchrpt.3 | ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) |
Ref | Expression |
---|---|
dchrptlem3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrpt.n1 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1 ) | |
2 | dchrpt.n | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | 2 | nnnn0d 11543 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
4 | dchrpt.z | . . . . . . . . . . . 12 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
5 | 4 | zncrng 20095 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ0 → 𝑍 ∈ CRing) |
6 | 3, 5 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ CRing) |
7 | crngring 18758 | . . . . . . . . . 10 ⊢ (𝑍 ∈ CRing → 𝑍 ∈ Ring) | |
8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ Ring) |
9 | dchrpt.u | . . . . . . . . . 10 ⊢ 𝑈 = (Unit‘𝑍) | |
10 | dchrpt.h | . . . . . . . . . 10 ⊢ 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈) | |
11 | 9, 10 | unitgrp 18867 | . . . . . . . . 9 ⊢ (𝑍 ∈ Ring → 𝐻 ∈ Grp) |
12 | 8, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐻 ∈ Grp) |
13 | grpmnd 17630 | . . . . . . . 8 ⊢ (𝐻 ∈ Grp → 𝐻 ∈ Mnd) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
15 | dchrpt.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ Word 𝑈) | |
16 | dmexg 7262 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑈 → dom 𝑊 ∈ V) | |
17 | 15, 16 | syl 17 | . . . . . . 7 ⊢ (𝜑 → dom 𝑊 ∈ V) |
18 | eqid 2760 | . . . . . . . 8 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
19 | 18 | gsumz 17575 | . . . . . . 7 ⊢ ((𝐻 ∈ Mnd ∧ dom 𝑊 ∈ V) → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
20 | 14, 17, 19 | syl2anc 696 | . . . . . 6 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
21 | dchrpt.1 | . . . . . . . . . 10 ⊢ 1 = (1r‘𝑍) | |
22 | 9, 10, 21 | unitgrpid 18869 | . . . . . . . . 9 ⊢ (𝑍 ∈ Ring → 1 = (0g‘𝐻)) |
23 | 8, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 1 = (0g‘𝐻)) |
24 | 23 | mpteq2dv 4897 | . . . . . . 7 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) = (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻))) |
25 | 24 | oveq2d 6829 | . . . . . 6 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g‘𝐻)))) |
26 | 20, 25, 23 | 3eqtr4d 2804 | . . . . 5 ⊢ (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) = 1 ) |
27 | 1, 26 | neeqtrrd 3006 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 ))) |
28 | dchrpt.2 | . . . . . 6 ⊢ (𝜑 → 𝐻dom DProd 𝑆) | |
29 | zex 11578 | . . . . . . . . . 10 ⊢ ℤ ∈ V | |
30 | 29 | mptex 6650 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) ∈ V |
31 | 30 | rnex 7265 | . . . . . . . 8 ⊢ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘))) ∈ V |
32 | dchrpt.s | . . . . . . . 8 ⊢ 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊‘𝑘)))) | |
33 | 31, 32 | dmmpti 6184 | . . . . . . 7 ⊢ dom 𝑆 = dom 𝑊 |
34 | 33 | a1i 11 | . . . . . 6 ⊢ (𝜑 → dom 𝑆 = dom 𝑊) |
35 | eqid 2760 | . . . . . 6 ⊢ (𝐻dProj𝑆) = (𝐻dProj𝑆) | |
36 | dchrpt.au | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
37 | dchrpt.3 | . . . . . . 7 ⊢ (𝜑 → (𝐻 DProd 𝑆) = 𝑈) | |
38 | 36, 37 | eleqtrrd 2842 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (𝐻 DProd 𝑆)) |
39 | eqid 2760 | . . . . . 6 ⊢ {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)} = {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)} | |
40 | 23 | adantr 472 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → 1 = (0g‘𝐻)) |
41 | 28, 34 | dprdf2 18606 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆:dom 𝑊⟶(SubGrp‘𝐻)) |
42 | 41 | ffvelrnda 6522 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (𝑆‘𝑎) ∈ (SubGrp‘𝐻)) |
43 | 18 | subg0cl 17803 | . . . . . . . . 9 ⊢ ((𝑆‘𝑎) ∈ (SubGrp‘𝐻) → (0g‘𝐻) ∈ (𝑆‘𝑎)) |
44 | 42, 43 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (0g‘𝐻) ∈ (𝑆‘𝑎)) |
45 | 40, 44 | eqeltrd 2839 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → 1 ∈ (𝑆‘𝑎)) |
46 | fvex 6362 | . . . . . . . . . . 11 ⊢ (1r‘𝑍) ∈ V | |
47 | 21, 46 | eqeltri 2835 | . . . . . . . . . 10 ⊢ 1 ∈ V |
48 | 47 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ V) |
49 | 17, 48 | fczfsuppd 8458 | . . . . . . . 8 ⊢ (𝜑 → (dom 𝑊 × { 1 }) finSupp 1 ) |
50 | fconstmpt 5320 | . . . . . . . . . 10 ⊢ (dom 𝑊 × { 1 }) = (𝑎 ∈ dom 𝑊 ↦ 1 ) | |
51 | 50 | eqcomi 2769 | . . . . . . . . 9 ⊢ (𝑎 ∈ dom 𝑊 ↦ 1 ) = (dom 𝑊 × { 1 }) |
52 | 51 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) = (dom 𝑊 × { 1 })) |
53 | 23 | eqcomd 2766 | . . . . . . . 8 ⊢ (𝜑 → (0g‘𝐻) = 1 ) |
54 | 49, 52, 53 | 3brtr4d 4836 | . . . . . . 7 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) finSupp (0g‘𝐻)) |
55 | 39, 28, 34, 45, 54 | dprdwd 18610 | . . . . . 6 ⊢ (𝜑 → (𝑎 ∈ dom 𝑊 ↦ 1 ) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑊(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐻)}) |
56 | 28, 34, 35, 38, 18, 39, 55 | dpjeq 18658 | . . . . 5 ⊢ (𝜑 → (𝐴 = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) ↔ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )) |
57 | 56 | necon3abid 2968 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ 1 )) ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )) |
58 | 27, 57 | mpbid 222 | . . 3 ⊢ (𝜑 → ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) |
59 | rexnal 3133 | . . 3 ⊢ (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) | |
60 | 58, 59 | sylibr 224 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) |
61 | df-ne 2933 | . . . 4 ⊢ ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ↔ ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ) | |
62 | dchrpt.g | . . . . . 6 ⊢ 𝐺 = (DChr‘𝑁) | |
63 | dchrpt.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐺) | |
64 | dchrpt.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑍) | |
65 | 2 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑁 ∈ ℕ) |
66 | 1 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴 ≠ 1 ) |
67 | dchrpt.m | . . . . . 6 ⊢ · = (.g‘𝐻) | |
68 | 36 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴 ∈ 𝑈) |
69 | 15 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑊 ∈ Word 𝑈) |
70 | 28 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐻dom DProd 𝑆) |
71 | 37 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (𝐻 DProd 𝑆) = 𝑈) |
72 | eqid 2760 | . . . . . 6 ⊢ (od‘𝐻) = (od‘𝐻) | |
73 | eqid 2760 | . . . . . 6 ⊢ (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎)))) = (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎)))) | |
74 | simprl 811 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑎 ∈ dom 𝑊) | |
75 | simprr 813 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ) | |
76 | eqid 2760 | . . . . . 6 ⊢ (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊‘𝑎)) ∧ ℎ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎))))↑𝑚)))) = (𝑢 ∈ 𝑈 ↦ (℩ℎ∃𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊‘𝑎)) ∧ ℎ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊‘𝑎))))↑𝑚)))) | |
77 | 62, 4, 63, 64, 21, 65, 66, 9, 10, 67, 32, 68, 69, 70, 71, 35, 72, 73, 74, 75, 76 | dchrptlem2 25189 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
78 | 77 | expr 644 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
79 | 61, 78 | syl5bir 233 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ dom 𝑊) → (¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
80 | 79 | rexlimdva 3169 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1)) |
81 | 60, 80 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑥‘𝐴) ≠ 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 ∃wrex 3051 {crab 3054 Vcvv 3340 {csn 4321 class class class wbr 4804 ↦ cmpt 4881 × cxp 5264 dom cdm 5266 ran crn 5267 ℩cio 6010 ‘cfv 6049 (class class class)co 6813 Xcixp 8074 finSupp cfsupp 8440 1c1 10129 -cneg 10459 / cdiv 10876 ℕcn 11212 2c2 11262 ℕ0cn0 11484 ℤcz 11569 ↑cexp 13054 Word cword 13477 Basecbs 16059 ↾s cress 16060 0gc0g 16302 Σg cgsu 16303 Mndcmnd 17495 Grpcgrp 17623 .gcmg 17741 SubGrpcsubg 17789 odcod 18144 DProd cdprd 18592 dProjcdpj 18593 mulGrpcmgp 18689 1rcur 18701 Ringcrg 18747 CRingccrg 18748 Unitcui 18839 ℤ/nℤczn 20053 ↑𝑐ccxp 24501 DChrcdchr 25156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-omul 7734 df-er 7911 df-ec 7913 df-qs 7917 df-map 8025 df-pm 8026 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-fi 8482 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-acn 8958 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-xneg 12139 df-xadd 12140 df-xmul 12141 df-ioo 12372 df-ioc 12373 df-ico 12374 df-icc 12375 df-fz 12520 df-fzo 12660 df-fl 12787 df-mod 12863 df-seq 12996 df-exp 13055 df-fac 13255 df-bc 13284 df-hash 13312 df-word 13485 df-shft 14006 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-limsup 14401 df-clim 14418 df-rlim 14419 df-sum 14616 df-ef 14997 df-sin 14999 df-cos 15000 df-pi 15002 df-dvds 15183 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-rest 16285 df-topn 16286 df-0g 16304 df-gsum 16305 df-topgen 16306 df-pt 16307 df-prds 16310 df-xrs 16364 df-qtop 16369 df-imas 16370 df-qus 16371 df-xps 16372 df-mre 16448 df-mrc 16449 df-acs 16451 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-submnd 17537 df-grp 17626 df-minusg 17627 df-sbg 17628 df-mulg 17742 df-subg 17792 df-nsg 17793 df-eqg 17794 df-ghm 17859 df-gim 17902 df-cntz 17950 df-oppg 17976 df-od 18148 df-lsm 18251 df-pj1 18252 df-cmn 18395 df-abl 18396 df-dprd 18594 df-dpj 18595 df-mgp 18690 df-ur 18702 df-ring 18749 df-cring 18750 df-oppr 18823 df-dvdsr 18841 df-unit 18842 df-rnghom 18917 df-subrg 18980 df-lmod 19067 df-lss 19135 df-lsp 19174 df-sra 19374 df-rgmod 19375 df-lidl 19376 df-rsp 19377 df-2idl 19434 df-psmet 19940 df-xmet 19941 df-met 19942 df-bl 19943 df-mopn 19944 df-fbas 19945 df-fg 19946 df-cnfld 19949 df-zring 20021 df-zrh 20054 df-zn 20057 df-top 20901 df-topon 20918 df-topsp 20939 df-bases 20952 df-cld 21025 df-ntr 21026 df-cls 21027 df-nei 21104 df-lp 21142 df-perf 21143 df-cn 21233 df-cnp 21234 df-haus 21321 df-tx 21567 df-hmeo 21760 df-fil 21851 df-fm 21943 df-flim 21944 df-flf 21945 df-xms 22326 df-ms 22327 df-tms 22328 df-cncf 22882 df-limc 23829 df-dv 23830 df-log 24502 df-cxp 24503 df-dchr 25157 |
This theorem is referenced by: dchrpt 25191 |
Copyright terms: Public domain | W3C validator |