MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem3 Structured version   Visualization version   GIF version

Theorem dchrptlem3 24891
Description: Lemma for dchrpt 24892. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g 𝐺 = (DChr‘𝑁)
dchrpt.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrpt.d 𝐷 = (Base‘𝐺)
dchrpt.b 𝐵 = (Base‘𝑍)
dchrpt.1 1 = (1r𝑍)
dchrpt.n (𝜑𝑁 ∈ ℕ)
dchrpt.n1 (𝜑𝐴1 )
dchrpt.u 𝑈 = (Unit‘𝑍)
dchrpt.h 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
dchrpt.m · = (.g𝐻)
dchrpt.s 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
dchrpt.au (𝜑𝐴𝑈)
dchrpt.w (𝜑𝑊 ∈ Word 𝑈)
dchrpt.2 (𝜑𝐻dom DProd 𝑆)
dchrpt.3 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
Assertion
Ref Expression
dchrptlem3 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Distinct variable groups:   𝑘,𝑛,𝑥, 1   𝐴,𝑘,𝑛,𝑥   𝑥,𝐵   𝑥,𝐺   𝑘,𝐻,𝑛,𝑥   𝑥,𝑁   𝑘,𝑊,𝑛,𝑥   · ,𝑘,𝑛,𝑥   𝑆,𝑘,𝑛,𝑥   𝑘,𝑍,𝑛,𝑥   𝑥,𝐷   𝜑,𝑘,𝑛,𝑥   𝑥,𝑈
Allowed substitution hints:   𝐵(𝑘,𝑛)   𝐷(𝑘,𝑛)   𝑈(𝑘,𝑛)   𝐺(𝑘,𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem dchrptlem3
Dummy variables 𝑎 𝑚 𝑢 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrpt.n1 . . . . 5 (𝜑𝐴1 )
2 dchrpt.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
32nnnn0d 11295 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
4 dchrpt.z . . . . . . . . . . . 12 𝑍 = (ℤ/nℤ‘𝑁)
54zncrng 19812 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
63, 5syl 17 . . . . . . . . . 10 (𝜑𝑍 ∈ CRing)
7 crngring 18479 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
86, 7syl 17 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
9 dchrpt.u . . . . . . . . . 10 𝑈 = (Unit‘𝑍)
10 dchrpt.h . . . . . . . . . 10 𝐻 = ((mulGrp‘𝑍) ↾s 𝑈)
119, 10unitgrp 18588 . . . . . . . . 9 (𝑍 ∈ Ring → 𝐻 ∈ Grp)
128, 11syl 17 . . . . . . . 8 (𝜑𝐻 ∈ Grp)
13 grpmnd 17350 . . . . . . . 8 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
1412, 13syl 17 . . . . . . 7 (𝜑𝐻 ∈ Mnd)
15 dchrpt.w . . . . . . . 8 (𝜑𝑊 ∈ Word 𝑈)
16 dmexg 7044 . . . . . . . 8 (𝑊 ∈ Word 𝑈 → dom 𝑊 ∈ V)
1715, 16syl 17 . . . . . . 7 (𝜑 → dom 𝑊 ∈ V)
18 eqid 2621 . . . . . . . 8 (0g𝐻) = (0g𝐻)
1918gsumz 17295 . . . . . . 7 ((𝐻 ∈ Mnd ∧ dom 𝑊 ∈ V) → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g𝐻))) = (0g𝐻))
2014, 17, 19syl2anc 692 . . . . . 6 (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g𝐻))) = (0g𝐻))
21 dchrpt.1 . . . . . . . . . 10 1 = (1r𝑍)
229, 10, 21unitgrpid 18590 . . . . . . . . 9 (𝑍 ∈ Ring → 1 = (0g𝐻))
238, 22syl 17 . . . . . . . 8 (𝜑1 = (0g𝐻))
2423mpteq2dv 4705 . . . . . . 7 (𝜑 → (𝑎 ∈ dom 𝑊1 ) = (𝑎 ∈ dom 𝑊 ↦ (0g𝐻)))
2524oveq2d 6620 . . . . . 6 (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) = (𝐻 Σg (𝑎 ∈ dom 𝑊 ↦ (0g𝐻))))
2620, 25, 233eqtr4d 2665 . . . . 5 (𝜑 → (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) = 1 )
271, 26neeqtrrd 2864 . . . 4 (𝜑𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊1 )))
28 dchrpt.2 . . . . . 6 (𝜑𝐻dom DProd 𝑆)
29 zex 11330 . . . . . . . . . 10 ℤ ∈ V
3029mptex 6440 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
3130rnex 7047 . . . . . . . 8 ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))) ∈ V
32 dchrpt.s . . . . . . . 8 𝑆 = (𝑘 ∈ dom 𝑊 ↦ ran (𝑛 ∈ ℤ ↦ (𝑛 · (𝑊𝑘))))
3331, 32dmmpti 5980 . . . . . . 7 dom 𝑆 = dom 𝑊
3433a1i 11 . . . . . 6 (𝜑 → dom 𝑆 = dom 𝑊)
35 eqid 2621 . . . . . 6 (𝐻dProj𝑆) = (𝐻dProj𝑆)
36 dchrpt.au . . . . . . 7 (𝜑𝐴𝑈)
37 dchrpt.3 . . . . . . 7 (𝜑 → (𝐻 DProd 𝑆) = 𝑈)
3836, 37eleqtrrd 2701 . . . . . 6 (𝜑𝐴 ∈ (𝐻 DProd 𝑆))
39 eqid 2621 . . . . . 6 {X𝑖 ∈ dom 𝑊(𝑆𝑖) ∣ finSupp (0g𝐻)} = {X𝑖 ∈ dom 𝑊(𝑆𝑖) ∣ finSupp (0g𝐻)}
4023adantr 481 . . . . . . . 8 ((𝜑𝑎 ∈ dom 𝑊) → 1 = (0g𝐻))
4128, 34dprdf2 18327 . . . . . . . . . 10 (𝜑𝑆:dom 𝑊⟶(SubGrp‘𝐻))
4241ffvelrnda 6315 . . . . . . . . 9 ((𝜑𝑎 ∈ dom 𝑊) → (𝑆𝑎) ∈ (SubGrp‘𝐻))
4318subg0cl 17523 . . . . . . . . 9 ((𝑆𝑎) ∈ (SubGrp‘𝐻) → (0g𝐻) ∈ (𝑆𝑎))
4442, 43syl 17 . . . . . . . 8 ((𝜑𝑎 ∈ dom 𝑊) → (0g𝐻) ∈ (𝑆𝑎))
4540, 44eqeltrd 2698 . . . . . . 7 ((𝜑𝑎 ∈ dom 𝑊) → 1 ∈ (𝑆𝑎))
46 fvex 6158 . . . . . . . . . . 11 (1r𝑍) ∈ V
4721, 46eqeltri 2694 . . . . . . . . . 10 1 ∈ V
4847a1i 11 . . . . . . . . 9 (𝜑1 ∈ V)
4917, 48fczfsuppd 8237 . . . . . . . 8 (𝜑 → (dom 𝑊 × { 1 }) finSupp 1 )
50 fconstmpt 5123 . . . . . . . . . 10 (dom 𝑊 × { 1 }) = (𝑎 ∈ dom 𝑊1 )
5150eqcomi 2630 . . . . . . . . 9 (𝑎 ∈ dom 𝑊1 ) = (dom 𝑊 × { 1 })
5251a1i 11 . . . . . . . 8 (𝜑 → (𝑎 ∈ dom 𝑊1 ) = (dom 𝑊 × { 1 }))
5323eqcomd 2627 . . . . . . . 8 (𝜑 → (0g𝐻) = 1 )
5449, 52, 533brtr4d 4645 . . . . . . 7 (𝜑 → (𝑎 ∈ dom 𝑊1 ) finSupp (0g𝐻))
5539, 28, 34, 45, 54dprdwd 18331 . . . . . 6 (𝜑 → (𝑎 ∈ dom 𝑊1 ) ∈ {X𝑖 ∈ dom 𝑊(𝑆𝑖) ∣ finSupp (0g𝐻)})
5628, 34, 35, 38, 18, 39, 55dpjeq 18379 . . . . 5 (𝜑 → (𝐴 = (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) ↔ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ))
5756necon3abid 2826 . . . 4 (𝜑 → (𝐴 ≠ (𝐻 Σg (𝑎 ∈ dom 𝑊1 )) ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ))
5827, 57mpbid 222 . . 3 (𝜑 → ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
59 rexnal 2989 . . 3 (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 ↔ ¬ ∀𝑎 ∈ dom 𝑊(((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
6058, 59sylibr 224 . 2 (𝜑 → ∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
61 df-ne 2791 . . . 4 ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 ↔ ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 )
62 dchrpt.g . . . . . 6 𝐺 = (DChr‘𝑁)
63 dchrpt.d . . . . . 6 𝐷 = (Base‘𝐺)
64 dchrpt.b . . . . . 6 𝐵 = (Base‘𝑍)
652adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑁 ∈ ℕ)
661adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴1 )
67 dchrpt.m . . . . . 6 · = (.g𝐻)
6836adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐴𝑈)
6915adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑊 ∈ Word 𝑈)
7028adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝐻dom DProd 𝑆)
7137adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (𝐻 DProd 𝑆) = 𝑈)
72 eqid 2621 . . . . . 6 (od‘𝐻) = (od‘𝐻)
73 eqid 2621 . . . . . 6 (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎)))) = (-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎))))
74 simprl 793 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → 𝑎 ∈ dom 𝑊)
75 simprr 795 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )
76 eqid 2621 . . . . . 6 (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊𝑎)) ∧ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎))))↑𝑚)))) = (𝑢𝑈 ↦ (℩𝑚 ∈ ℤ ((((𝐻dProj𝑆)‘𝑎)‘𝑢) = (𝑚 · (𝑊𝑎)) ∧ = ((-1↑𝑐(2 / ((od‘𝐻)‘(𝑊𝑎))))↑𝑚))))
7762, 4, 63, 64, 21, 65, 66, 9, 10, 67, 32, 68, 69, 70, 71, 35, 72, 73, 74, 75, 76dchrptlem2 24890 . . . . 5 ((𝜑 ∧ (𝑎 ∈ dom 𝑊 ∧ (((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 )) → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
7877expr 642 . . . 4 ((𝜑𝑎 ∈ dom 𝑊) → ((((𝐻dProj𝑆)‘𝑎)‘𝐴) ≠ 1 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1))
7961, 78syl5bir 233 . . 3 ((𝜑𝑎 ∈ dom 𝑊) → (¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1))
8079rexlimdva 3024 . 2 (𝜑 → (∃𝑎 ∈ dom 𝑊 ¬ (((𝐻dProj𝑆)‘𝑎)‘𝐴) = 1 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1))
8160, 80mpd 15 1 (𝜑 → ∃𝑥𝐷 (𝑥𝐴) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  Vcvv 3186  {csn 4148   class class class wbr 4613  cmpt 4673   × cxp 5072  dom cdm 5074  ran crn 5075  cio 5808  cfv 5847  (class class class)co 6604  Xcixp 7852   finSupp cfsupp 8219  1c1 9881  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  cexp 12800  Word cword 13230  Basecbs 15781  s cress 15782  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215  Grpcgrp 17343  .gcmg 17461  SubGrpcsubg 17509  odcod 17865   DProd cdprd 18313  dProjcdpj 18314  mulGrpcmgp 18410  1rcur 18422  Ringcrg 18468  CRingccrg 18469  Unitcui 18560  ℤ/nczn 19770  𝑐ccxp 24206  DChrcdchr 24857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-ec 7689  df-qs 7693  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-word 13238  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-dvds 14908  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-qus 16090  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-nsg 17513  df-eqg 17514  df-ghm 17579  df-gim 17622  df-cntz 17671  df-oppg 17697  df-od 17869  df-lsm 17972  df-pj1 17973  df-cmn 18116  df-abl 18117  df-dprd 18315  df-dpj 18316  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-rnghom 18636  df-subrg 18699  df-lmod 18786  df-lss 18852  df-lsp 18891  df-sra 19091  df-rgmod 19092  df-lidl 19093  df-rsp 19094  df-2idl 19151  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-zring 19738  df-zrh 19771  df-zn 19774  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207  df-cxp 24208  df-dchr 24858
This theorem is referenced by:  dchrpt  24892
  Copyright terms: Public domain W3C validator