MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl1eudis Structured version   Visualization version   GIF version

Theorem ehl1eudis 24016
Description: The Euclidean distance function in a real Euclidean space of dimension 1. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl1eudis.e 𝐸 = (𝔼hil‘1)
ehl1eudis.x 𝑋 = (ℝ ↑m {1})
ehl1eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl1eudis 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
Distinct variable group:   𝑓,𝑔
Allowed substitution hints:   𝐷(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem ehl1eudis
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11907 . . 3 1 ∈ ℕ0
2 1z 12006 . . . . . 6 1 ∈ ℤ
3 fzsn 12946 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
42, 3ax-mp 5 . . . . 5 (1...1) = {1}
54eqcomi 2829 . . . 4 {1} = (1...1)
6 ehl1eudis.e . . . 4 𝐸 = (𝔼hil‘1)
7 ehl1eudis.x . . . 4 𝑋 = (ℝ ↑m {1})
8 ehl1eudis.d . . . 4 𝐷 = (dist‘𝐸)
95, 6, 7, 8ehleudis 24014 . . 3 (1 ∈ ℕ0𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))))
101, 9ax-mp 5 . 2 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)))
117eleq2i 2903 . . . . . . . . . . . 12 (𝑓𝑋𝑓 ∈ (ℝ ↑m {1}))
12 reex 10621 . . . . . . . . . . . . 13 ℝ ∈ V
13 snex 5325 . . . . . . . . . . . . 13 {1} ∈ V
1412, 13elmap 8428 . . . . . . . . . . . 12 (𝑓 ∈ (ℝ ↑m {1}) ↔ 𝑓:{1}⟶ℝ)
1511, 14bitri 277 . . . . . . . . . . 11 (𝑓𝑋𝑓:{1}⟶ℝ)
16 id 22 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 𝑓:{1}⟶ℝ)
17 1ex 10630 . . . . . . . . . . . . . 14 1 ∈ V
1817snid 4594 . . . . . . . . . . . . 13 1 ∈ {1}
1918a1i 11 . . . . . . . . . . . 12 (𝑓:{1}⟶ℝ → 1 ∈ {1})
2016, 19ffvelrnd 6845 . . . . . . . . . . 11 (𝑓:{1}⟶ℝ → (𝑓‘1) ∈ ℝ)
2115, 20sylbi 219 . . . . . . . . . 10 (𝑓𝑋 → (𝑓‘1) ∈ ℝ)
2221adantr 483 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑓‘1) ∈ ℝ)
237eleq2i 2903 . . . . . . . . . . . 12 (𝑔𝑋𝑔 ∈ (ℝ ↑m {1}))
2412, 13elmap 8428 . . . . . . . . . . . 12 (𝑔 ∈ (ℝ ↑m {1}) ↔ 𝑔:{1}⟶ℝ)
2523, 24bitri 277 . . . . . . . . . . 11 (𝑔𝑋𝑔:{1}⟶ℝ)
26 id 22 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 𝑔:{1}⟶ℝ)
2718a1i 11 . . . . . . . . . . . 12 (𝑔:{1}⟶ℝ → 1 ∈ {1})
2826, 27ffvelrnd 6845 . . . . . . . . . . 11 (𝑔:{1}⟶ℝ → (𝑔‘1) ∈ ℝ)
2925, 28sylbi 219 . . . . . . . . . 10 (𝑔𝑋 → (𝑔‘1) ∈ ℝ)
3029adantl 484 . . . . . . . . 9 ((𝑓𝑋𝑔𝑋) → (𝑔‘1) ∈ ℝ)
3122, 30resubcld 11061 . . . . . . . 8 ((𝑓𝑋𝑔𝑋) → ((𝑓‘1) − (𝑔‘1)) ∈ ℝ)
3231resqcld 13608 . . . . . . 7 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℝ)
3332recnd 10662 . . . . . 6 ((𝑓𝑋𝑔𝑋) → (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ)
34 fveq2 6663 . . . . . . . . 9 (𝑘 = 1 → (𝑓𝑘) = (𝑓‘1))
35 fveq2 6663 . . . . . . . . 9 (𝑘 = 1 → (𝑔𝑘) = (𝑔‘1))
3634, 35oveq12d 7167 . . . . . . . 8 (𝑘 = 1 → ((𝑓𝑘) − (𝑔𝑘)) = ((𝑓‘1) − (𝑔‘1)))
3736oveq1d 7164 . . . . . . 7 (𝑘 = 1 → (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
3837sumsn 15094 . . . . . 6 ((1 ∈ ℤ ∧ (((𝑓‘1) − (𝑔‘1))↑2) ∈ ℂ) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
392, 33, 38sylancr 589 . . . . 5 ((𝑓𝑋𝑔𝑋) → Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2) = (((𝑓‘1) − (𝑔‘1))↑2))
4039fveq2d 6667 . . . 4 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4131absred 14769 . . . 4 ((𝑓𝑋𝑔𝑋) → (abs‘((𝑓‘1) − (𝑔‘1))) = (√‘(((𝑓‘1) − (𝑔‘1))↑2)))
4240, 41eqtr4d 2858 . . 3 ((𝑓𝑋𝑔𝑋) → (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2)) = (abs‘((𝑓‘1) − (𝑔‘1))))
4342mpoeq3ia 7225 . 2 (𝑓𝑋, 𝑔𝑋 ↦ (√‘Σ𝑘 ∈ {1} (((𝑓𝑘) − (𝑔𝑘))↑2))) = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
4410, 43eqtri 2843 1 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (abs‘((𝑓‘1) − (𝑔‘1))))
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1536  wcel 2113  {csn 4560  wf 6344  cfv 6348  (class class class)co 7149  cmpo 7151  m cmap 8399  cc 10528  cr 10529  1c1 10531  cmin 10863  2c2 11686  0cn0 11891  cz 11975  ...cfz 12889  cexp 13426  csqrt 14585  abscabs 14586  Σcsu 15035  distcds 16567  𝔼hilcehl 23980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-sup 8899  df-oi 8967  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-fz 12890  df-fzo 13031  df-seq 13367  df-exp 13427  df-hash 13688  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-starv 16573  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-unif 16581  df-hom 16582  df-cco 16583  df-0g 16708  df-gsum 16709  df-prds 16714  df-pws 16716  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-mhm 17949  df-grp 18099  df-minusg 18100  df-sbg 18101  df-subg 18269  df-ghm 18349  df-cntz 18440  df-cmn 18901  df-abl 18902  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19366  df-dvdsr 19384  df-unit 19385  df-invr 19415  df-dvr 19426  df-rnghom 19460  df-drng 19497  df-field 19498  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20539  df-refld 20742  df-dsmm 20869  df-frlm 20884  df-nm 23185  df-tng 23187  df-tcph 23766  df-rrx 23981  df-ehl 23982
This theorem is referenced by:  ehl1eudisval  24017
  Copyright terms: Public domain W3C validator