MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elntg2 Structured version   Visualization version   GIF version

Theorem elntg2 26771
Description: The line definition in the Tarski structure for the Euclidean geometry. In contrast to elntg 26770, the betweenness can be strengthened by excluding 1 resp. 0 from the related intervals (because of 𝑥𝑦). (Contributed by AV, 14-Feb-2023.)
Hypotheses
Ref Expression
elntg2.1 𝑃 = (Base‘(EEG‘𝑁))
elntg2.2 𝐼 = (1...𝑁)
Assertion
Ref Expression
elntg2 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))}))
Distinct variable groups:   𝑖,𝐼   𝑖,𝑁,𝑘,𝑙,𝑚,𝑝,𝑥,𝑦   𝑃,𝑖,𝑝
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑘,𝑚,𝑙)   𝐼(𝑥,𝑦,𝑘,𝑚,𝑝,𝑙)

Proof of Theorem elntg2
StepHypRef Expression
1 elntg2.1 . . 3 𝑃 = (Base‘(EEG‘𝑁))
2 eqid 2821 . . 3 (Itv‘(EEG‘𝑁)) = (Itv‘(EEG‘𝑁))
31, 2elntg 26770 . 2 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ (𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝))}))
4 simpl1 1187 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑁 ∈ ℕ)
5 simpl2 1188 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑥𝑃)
6 eldifi 4103 . . . . . . . . 9 (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦𝑃)
763ad2ant3 1131 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦𝑃)
87adantr 483 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑦𝑃)
9 simpr 487 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑝𝑃)
104, 1, 2, 5, 8, 9ebtwntg 26768 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑝 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦)))
11 eengbas 26767 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝔼‘𝑁) = (Base‘(EEG‘𝑁)))
1211, 1syl6reqr 2875 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑃 = (𝔼‘𝑁))
13123ad2ant1 1129 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑃 = (𝔼‘𝑁))
1413eleq2d 2898 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → (𝑝𝑃𝑝 ∈ (𝔼‘𝑁)))
1514biimpa 479 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑝 ∈ (𝔼‘𝑁))
1612eleq2d 2898 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑥𝑃𝑥 ∈ (𝔼‘𝑁)))
1716biimpa 479 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥𝑃) → 𝑥 ∈ (𝔼‘𝑁))
18173adant3 1128 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑥 ∈ (𝔼‘𝑁))
1918adantr 483 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑥 ∈ (𝔼‘𝑁))
2012eleq2d 2898 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑦𝑃𝑦 ∈ (𝔼‘𝑁)))
2120biimpcd 251 . . . . . . . . . . . 12 (𝑦𝑃 → (𝑁 ∈ ℕ → 𝑦 ∈ (𝔼‘𝑁)))
2221, 6syl11 33 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (𝔼‘𝑁)))
2322a1d 25 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑥𝑃 → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦 ∈ (𝔼‘𝑁))))
24233imp 1107 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦 ∈ (𝔼‘𝑁))
2524adantr 483 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑦 ∈ (𝔼‘𝑁))
26 brbtwn 26685 . . . . . . . 8 ((𝑝 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑝 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖)))))
2715, 19, 25, 26syl3anc 1367 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑝 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖)))))
28 elntg2.2 . . . . . . . . 9 𝐼 = (1...𝑁)
2928raleqi 3413 . . . . . . . 8 (∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))))
3029rexbii 3247 . . . . . . 7 (∃𝑘 ∈ (0[,]1)∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))))
3127, 30syl6bbr 291 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑝 Btwn ⟨𝑥, 𝑦⟩ ↔ ∃𝑘 ∈ (0[,]1)∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖)))))
3210, 31bitr3d 283 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ↔ ∃𝑘 ∈ (0[,]1)∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖)))))
334, 1, 2, 9, 8, 5ebtwntg 26768 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑥 Btwn ⟨𝑝, 𝑦⟩ ↔ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦)))
34 brbtwn 26685 . . . . . . . 8 ((𝑥 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑝, 𝑦⟩ ↔ ∃𝑙 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))))
3519, 15, 25, 34syl3anc 1367 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑥 Btwn ⟨𝑝, 𝑦⟩ ↔ ∃𝑙 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))))
3633, 35bitr3d 283 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ↔ ∃𝑙 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))))
37 0xr 10688 . . . . . . . . . 10 0 ∈ ℝ*
38 1xr 10700 . . . . . . . . . 10 1 ∈ ℝ*
39 0le1 11163 . . . . . . . . . 10 0 ≤ 1
40 snunico 12866 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ((0[,)1) ∪ {1}) = (0[,]1))
4137, 38, 39, 40mp3an 1457 . . . . . . . . 9 ((0[,)1) ∪ {1}) = (0[,]1)
4241eqcomi 2830 . . . . . . . 8 (0[,]1) = ((0[,)1) ∪ {1})
4342a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (0[,]1) = ((0[,)1) ∪ {1}))
4443rexeqdv 3416 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∃𝑙 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ∃𝑙 ∈ ((0[,)1) ∪ {1})∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))))
45 rexun 4166 . . . . . . 7 (∃𝑙 ∈ ((0[,)1) ∪ {1})∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))))
46 eldifsn 4719 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑃 ∖ {𝑥}) ↔ (𝑦𝑃𝑦𝑥))
47 elee 26680 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁) ↔ 𝑥:(1...𝑁)⟶ℝ))
48 ffn 6514 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥:(1...𝑁)⟶ℝ → 𝑥 Fn (1...𝑁))
4947, 48syl6bi 255 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (𝑥 ∈ (𝔼‘𝑁) → 𝑥 Fn (1...𝑁)))
5016, 49sylbid 242 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (𝑥𝑃𝑥 Fn (1...𝑁)))
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑃 → (𝑁 ∈ ℕ → (𝑥𝑃𝑥 Fn (1...𝑁))))
52513imp 1107 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑃𝑁 ∈ ℕ ∧ 𝑥𝑃) → 𝑥 Fn (1...𝑁))
53 elee 26680 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑦 ∈ (𝔼‘𝑁) ↔ 𝑦:(1...𝑁)⟶ℝ))
54 ffn 6514 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦:(1...𝑁)⟶ℝ → 𝑦 Fn (1...𝑁))
5553, 54syl6bi 255 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (𝑦 ∈ (𝔼‘𝑁) → 𝑦 Fn (1...𝑁)))
5620, 55sylbid 242 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (𝑦𝑃𝑦 Fn (1...𝑁)))
5756a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑃 → (𝑁 ∈ ℕ → (𝑦𝑃𝑦 Fn (1...𝑁))))
58573imp31 1108 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑃𝑁 ∈ ℕ ∧ 𝑥𝑃) → 𝑦 Fn (1...𝑁))
59 eqfnfv 6802 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 Fn (1...𝑁) ∧ 𝑦 Fn (1...𝑁)) → (𝑥 = 𝑦 ↔ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖)))
6052, 58, 59syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑃𝑁 ∈ ℕ ∧ 𝑥𝑃) → (𝑥 = 𝑦 ↔ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖)))
6160biimprd 250 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑃𝑁 ∈ ℕ ∧ 𝑥𝑃) → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖) → 𝑥 = 𝑦))
62 eqcom 2828 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥𝑥 = 𝑦)
6361, 62syl6ibr 254 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑃𝑁 ∈ ℕ ∧ 𝑥𝑃) → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖) → 𝑦 = 𝑥))
6463necon3ad 3029 . . . . . . . . . . . . . . . . 17 ((𝑦𝑃𝑁 ∈ ℕ ∧ 𝑥𝑃) → (𝑦𝑥 → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖)))
65643exp 1115 . . . . . . . . . . . . . . . 16 (𝑦𝑃 → (𝑁 ∈ ℕ → (𝑥𝑃 → (𝑦𝑥 → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖)))))
6665com24 95 . . . . . . . . . . . . . . 15 (𝑦𝑃 → (𝑦𝑥 → (𝑥𝑃 → (𝑁 ∈ ℕ → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖)))))
6766imp 409 . . . . . . . . . . . . . 14 ((𝑦𝑃𝑦𝑥) → (𝑥𝑃 → (𝑁 ∈ ℕ → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖))))
6846, 67sylbi 219 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑃 ∖ {𝑥}) → (𝑥𝑃 → (𝑁 ∈ ℕ → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖))))
69683imp31 1108 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖))
7069adantr 483 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖))
7112eleq2d 2898 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (𝑝𝑃𝑝 ∈ (𝔼‘𝑁)))
72 elee 26680 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → (𝑝 ∈ (𝔼‘𝑁) ↔ 𝑝:(1...𝑁)⟶ℝ))
7372biimpd 231 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (𝑝 ∈ (𝔼‘𝑁) → 𝑝:(1...𝑁)⟶ℝ))
7471, 73sylbid 242 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑝𝑃𝑝:(1...𝑁)⟶ℝ))
75743ad2ant1 1129 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → (𝑝𝑃𝑝:(1...𝑁)⟶ℝ))
7675imp 409 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑝:(1...𝑁)⟶ℝ)
7776ffvelrnda 6851 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℝ)
7877recnd 10669 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℂ)
7978mul02d 10838 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (0 · (𝑝𝑖)) = 0)
8021, 53mpbidi 243 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑃 → (𝑁 ∈ ℕ → 𝑦:(1...𝑁)⟶ℝ))
8180, 6syl11 33 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ))
8281a1d 25 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑥𝑃 → (𝑦 ∈ (𝑃 ∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ)))
83823imp 1107 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑦:(1...𝑁)⟶ℝ)
8483adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑦:(1...𝑁)⟶ℝ)
8584ffvelrnda 6851 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℝ)
8685recnd 10669 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℂ)
8786mulid2d 10659 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (1 · (𝑦𝑖)) = (𝑦𝑖))
8879, 87oveq12d 7174 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖))) = (0 + (𝑦𝑖)))
8986addid2d 10841 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (0 + (𝑦𝑖)) = (𝑦𝑖))
9088, 89eqtrd 2856 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖))) = (𝑦𝑖))
9190eqeq2d 2832 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖))) ↔ (𝑥𝑖) = (𝑦𝑖)))
9291ralbidva 3196 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖)))
9370, 92mtbird 327 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖))))
94 1re 10641 . . . . . . . . . . 11 1 ∈ ℝ
95 oveq2 7164 . . . . . . . . . . . . . . . . 17 (𝑙 = 1 → (1 − 𝑙) = (1 − 1))
9695oveq1d 7171 . . . . . . . . . . . . . . . 16 (𝑙 = 1 → ((1 − 𝑙) · (𝑝𝑖)) = ((1 − 1) · (𝑝𝑖)))
97 1m1e0 11710 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
9897oveq1i 7166 . . . . . . . . . . . . . . . 16 ((1 − 1) · (𝑝𝑖)) = (0 · (𝑝𝑖))
9996, 98syl6eq 2872 . . . . . . . . . . . . . . 15 (𝑙 = 1 → ((1 − 𝑙) · (𝑝𝑖)) = (0 · (𝑝𝑖)))
100 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑙 = 1 → (𝑙 · (𝑦𝑖)) = (1 · (𝑦𝑖)))
10199, 100oveq12d 7174 . . . . . . . . . . . . . 14 (𝑙 = 1 → (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) = ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖))))
102101eqeq2d 2832 . . . . . . . . . . . . 13 (𝑙 = 1 → ((𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ (𝑥𝑖) = ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖)))))
103102ralbidv 3197 . . . . . . . . . . . 12 (𝑙 = 1 → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖)))))
104103rexsng 4614 . . . . . . . . . . 11 (1 ∈ ℝ → (∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖)))))
10594, 104ax-mp 5 . . . . . . . . . 10 (∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = ((0 · (𝑝𝑖)) + (1 · (𝑦𝑖))))
10693, 105sylnibr 331 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → ¬ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))))
10728raleqi 3413 . . . . . . . . . . 11 (∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))))
108107rexbii 3247 . . . . . . . . . 10 (∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))))
109 biorf 933 . . . . . . . . . 10 (¬ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) → (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ (∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))))))
110108, 109syl5bb 285 . . . . . . . . 9 (¬ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) → (∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ (∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))))))
111106, 110syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ (∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))))))
112 orcom 866 . . . . . . . 8 ((∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) ↔ (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))))
113111, 112syl6rbb 290 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → ((∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑙 ∈ {1}∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) ↔ ∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))))
11445, 113syl5bb 285 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∃𝑙 ∈ ((0[,)1) ∪ {1})∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))))
11536, 44, 1143bitrd 307 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ↔ ∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))))
1164, 1, 2, 5, 9, 8ebtwntg 26768 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑦 Btwn ⟨𝑥, 𝑝⟩ ↔ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝)))
117 brbtwn 26685 . . . . . . . 8 ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑝 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝑥, 𝑝⟩ ↔ ∃𝑚 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
11825, 19, 15, 117syl3anc 1367 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑦 Btwn ⟨𝑥, 𝑝⟩ ↔ ∃𝑚 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
119116, 118bitr3d 283 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝) ↔ ∃𝑚 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
120 snunioc 12867 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
12137, 38, 39, 120mp3an 1457 . . . . . . . . 9 ({0} ∪ (0(,]1)) = (0[,]1)
122121eqcomi 2830 . . . . . . . 8 (0[,]1) = ({0} ∪ (0(,]1))
123122a1i 11 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (0[,]1) = ({0} ∪ (0(,]1)))
124123rexeqdv 3416 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∃𝑚 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ ∃𝑚 ∈ ({0} ∪ (0(,]1))∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
125 eqcom 2828 . . . . . . . . . . . 12 ((𝑥𝑖) = (𝑦𝑖) ↔ (𝑦𝑖) = (𝑥𝑖))
126125ralbii 3165 . . . . . . . . . . 11 (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (𝑦𝑖) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (𝑥𝑖))
12770, 126sylnib 330 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (𝑥𝑖))
12816biimpd 231 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (𝑥𝑃𝑥 ∈ (𝔼‘𝑁)))
129128, 47sylibd 241 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑥𝑃𝑥:(1...𝑁)⟶ℝ))
130129imp 409 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑥𝑃) → 𝑥:(1...𝑁)⟶ℝ)
1311303adant3 1128 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → 𝑥:(1...𝑁)⟶ℝ)
132131adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → 𝑥:(1...𝑁)⟶ℝ)
133132ffvelrnda 6851 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℝ)
134133recnd 10669 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℂ)
135134mulid2d 10659 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → (1 · (𝑥𝑖)) = (𝑥𝑖))
136135, 79oveq12d 7174 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖))) = ((𝑥𝑖) + 0))
137134addid1d 10840 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) + 0) = (𝑥𝑖))
138136, 137eqtrd 2856 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖))) = (𝑥𝑖))
139138eqeq2d 2832 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) = ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖))) ↔ (𝑦𝑖) = (𝑥𝑖)))
140139ralbidva 3196 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (𝑥𝑖)))
141127, 140mtbird 327 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → ¬ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖))))
142 0re 10643 . . . . . . . . . 10 0 ∈ ℝ
143 oveq2 7164 . . . . . . . . . . . . . . . 16 (𝑚 = 0 → (1 − 𝑚) = (1 − 0))
144143oveq1d 7171 . . . . . . . . . . . . . . 15 (𝑚 = 0 → ((1 − 𝑚) · (𝑥𝑖)) = ((1 − 0) · (𝑥𝑖)))
145 1m0e1 11759 . . . . . . . . . . . . . . . 16 (1 − 0) = 1
146145oveq1i 7166 . . . . . . . . . . . . . . 15 ((1 − 0) · (𝑥𝑖)) = (1 · (𝑥𝑖))
147144, 146syl6eq 2872 . . . . . . . . . . . . . 14 (𝑚 = 0 → ((1 − 𝑚) · (𝑥𝑖)) = (1 · (𝑥𝑖)))
148 oveq1 7163 . . . . . . . . . . . . . 14 (𝑚 = 0 → (𝑚 · (𝑝𝑖)) = (0 · (𝑝𝑖)))
149147, 148oveq12d 7174 . . . . . . . . . . . . 13 (𝑚 = 0 → (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) = ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖))))
150149eqeq2d 2832 . . . . . . . . . . . 12 (𝑚 = 0 → ((𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (𝑦𝑖) = ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖)))))
151150ralbidv 3197 . . . . . . . . . . 11 (𝑚 = 0 → (∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖)))))
152151rexsng 4614 . . . . . . . . . 10 (0 ∈ ℝ → (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖)))))
153142, 152ax-mp 5 . . . . . . . . 9 (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = ((1 · (𝑥𝑖)) + (0 · (𝑝𝑖))))
154141, 153sylnibr 331 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → ¬ ∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))
15528raleqi 3413 . . . . . . . . . 10 (∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))
156155rexbii 3247 . . . . . . . . 9 (∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))
157 biorf 933 . . . . . . . . 9 (¬ ∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) → (∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
158156, 157syl5bb 285 . . . . . . . 8 (¬ ∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) → (∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
159154, 158syl 17 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
160 rexun 4166 . . . . . . 7 (∃𝑚 ∈ ({0} ∪ (0(,]1))∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (∃𝑚 ∈ {0}∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
161159, 160syl6rbbr 292 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (∃𝑚 ∈ ({0} ∪ (0(,]1))∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ ∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
162119, 124, 1613bitrd 307 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → (𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝) ↔ ∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
16332, 115, 1623orbi123d 1431 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) ∧ 𝑝𝑃) → ((𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝)) ↔ (∃𝑘 ∈ (0[,]1)∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
164163rabbidva 3478 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥𝑃𝑦 ∈ (𝑃 ∖ {𝑥})) → {𝑝𝑃 ∣ (𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝))} = {𝑝𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))})
165164mpoeq3dva 7231 . 2 (𝑁 ∈ ℕ → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ (𝑝 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑥 ∈ (𝑝(Itv‘(EEG‘𝑁))𝑦) ∨ 𝑦 ∈ (𝑥(Itv‘(EEG‘𝑁))𝑝))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))}))
1663, 165eqtrd 2856 1 (𝑁 ∈ ℕ → (LineG‘(EEG‘𝑁)) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ (∃𝑘 ∈ (0[,]1)∀𝑖𝐼 (𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖𝐼 (𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖𝐼 (𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  cdif 3933  cun 3934  {csn 4567  cop 4573   class class class wbr 5066   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  *cxr 10674  cle 10676  cmin 10870  cn 11638  (,]cioc 12740  [,)cico 12741  [,]cicc 12742  ...cfz 12893  Basecbs 16483  Itvcitv 26222  LineGclng 26223  𝔼cee 26674   Btwn cbtwn 26675  EEGceeng 26763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-seq 13371  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-ds 16587  df-itv 26224  df-lng 26225  df-ee 26677  df-btwn 26678  df-eeng 26764
This theorem is referenced by:  eenglngeehlnm  44775
  Copyright terms: Public domain W3C validator