Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem19 Structured version   Visualization version   GIF version

Theorem etransclem19 40973
 Description: The 𝑁-th derivative of 𝐻 is 0 if 𝑁 is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem19.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem19.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem19.p (𝜑𝑃 ∈ ℕ)
etransclem19.1 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem19.J (𝜑𝐽 ∈ (0...𝑀))
etransclem19.n (𝜑𝑁 ∈ ℤ)
etransclem19.7 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
Assertion
Ref Expression
etransclem19 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem19
StepHypRef Expression
1 etransclem19.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem19.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem19.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem19.1 . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
5 etransclem19.J . . 3 (𝜑𝐽 ∈ (0...𝑀))
6 etransclem19.n . . . 4 (𝜑𝑁 ∈ ℤ)
7 0red 10233 . . . . 5 (𝜑 → 0 ∈ ℝ)
86zred 11674 . . . . 5 (𝜑𝑁 ∈ ℝ)
9 nnm1nn0 11526 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
103, 9syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
1110nn0red 11544 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℝ)
123nnred 11227 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
1311, 12ifcld 4275 . . . . . 6 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
1410nn0ge0d 11546 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑃 − 1))
1514adantr 472 . . . . . . . 8 ((𝜑𝐽 = 0) → 0 ≤ (𝑃 − 1))
16 iftrue 4236 . . . . . . . . . 10 (𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
1716eqcomd 2766 . . . . . . . . 9 (𝐽 = 0 → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
1817adantl 473 . . . . . . . 8 ((𝜑𝐽 = 0) → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
1915, 18breqtrd 4830 . . . . . . 7 ((𝜑𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
203nnnn0d 11543 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ0)
2120nn0ge0d 11546 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑃)
2221adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ 𝑃)
23 iffalse 4239 . . . . . . . . . 10 𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = 𝑃)
2423eqcomd 2766 . . . . . . . . 9 𝐽 = 0 → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2524adantl 473 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2622, 25breqtrd 4830 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
2719, 26pm2.61dan 867 . . . . . 6 (𝜑 → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
28 etransclem19.7 . . . . . 6 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
297, 13, 8, 27, 28lelttrd 10387 . . . . 5 (𝜑 → 0 < 𝑁)
307, 8, 29ltled 10377 . . . 4 (𝜑 → 0 ≤ 𝑁)
31 elnn0z 11582 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
326, 30, 31sylanbrc 701 . . 3 (𝜑𝑁 ∈ ℕ0)
331, 2, 3, 4, 5, 32etransclem17 40971 . 2 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
3428iftrued 4238 . . 3 (𝜑 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0)
3534mpteq2dv 4897 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ 0))
3633, 35eqtrd 2794 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ 0))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ifcif 4230  {cpr 4323   class class class wbr 4804   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129   · cmul 10133   < clt 10266   ≤ cle 10267   − cmin 10458   / cdiv 10876  ℕcn 11212  ℕ0cn0 11484  ℤcz 11569  ...cfz 12519  ↑cexp 13054  !cfa 13254   ↾t crest 16283  TopOpenctopn 16284  ℂfldccnfld 19948   D𝑛 cdvn 23827 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-fac 13255  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-dvn 23831 This theorem is referenced by:  etransclem32  40986
 Copyright terms: Public domain W3C validator