Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem17 Structured version   Visualization version   GIF version

Theorem etransclem17 40231
Description: The 𝑁-th derivative of 𝐻. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem17.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem17.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem17.p (𝜑𝑃 ∈ ℕ)
etransclem17.1 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem17.J (𝜑𝐽 ∈ (0...𝑀))
etransclem17.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem17 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem17
StepHypRef Expression
1 etransclem17.1 . . . . . 6 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
2 etransclem17.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ {ℝ, ℂ})
3 etransclem17.x . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
42, 3dvdmsscn 39914 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ ℂ)
54sselda 3595 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
65adantlr 750 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑥 ∈ ℂ)
7 elfzelz 12327 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
87zcnd 11468 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
98ad2antlr 762 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 ∈ ℂ)
106, 9negsubd 10383 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝑥 + -𝑗) = (𝑥𝑗))
1110eqcomd 2626 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝑥𝑗) = (𝑥 + -𝑗))
1211oveq1d 6650 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1312mpteq2dva 4735 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
1413mpteq2dva 4735 . . . . . 6 (𝜑 → (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))))
151, 14syl5eq 2666 . . . . 5 (𝜑𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))))
16 negeq 10258 . . . . . . . . 9 (𝑗 = 𝐽 → -𝑗 = -𝐽)
1716oveq2d 6651 . . . . . . . 8 (𝑗 = 𝐽 → (𝑥 + -𝑗) = (𝑥 + -𝐽))
18 eqeq1 2624 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑗 = 0 ↔ 𝐽 = 0))
1918ifbid 4099 . . . . . . . 8 (𝑗 = 𝐽 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2017, 19oveq12d 6653 . . . . . . 7 (𝑗 = 𝐽 → ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
2120mpteq2dv 4736 . . . . . 6 (𝑗 = 𝐽 → (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
2221adantl 482 . . . . 5 ((𝜑𝑗 = 𝐽) → (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
23 etransclem17.J . . . . 5 (𝜑𝐽 ∈ (0...𝑀))
24 mptexg 6469 . . . . . 6 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
253, 24syl 17 . . . . 5 (𝜑 → (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
2615, 22, 23, 25fvmptd 6275 . . . 4 (𝜑 → (𝐻𝐽) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
2726oveq2d 6651 . . 3 (𝜑 → (𝑆 D𝑛 (𝐻𝐽)) = (𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))))
2827fveq1d 6180 . 2 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁))
29 etransclem17.n . . 3 (𝜑𝑁 ∈ ℕ0)
30 elfzelz 12327 . . . . . . 7 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℤ)
3130zcnd 11468 . . . . . 6 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℂ)
3223, 31syl 17 . . . . 5 (𝜑𝐽 ∈ ℂ)
3332negcld 10364 . . . 4 (𝜑 → -𝐽 ∈ ℂ)
34 etransclem17.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
35 nnm1nn0 11319 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3634, 35syl 17 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3734nnnn0d 11336 . . . . 5 (𝜑𝑃 ∈ ℕ0)
3836, 37ifcld 4122 . . . 4 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
39 eqid 2620 . . . 4 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
402, 3, 33, 38, 39dvnxpaek 39920 . . 3 ((𝜑𝑁 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4129, 40mpdan 701 . 2 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4232adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
435, 42negsubd 10383 . . . . . 6 ((𝜑𝑥𝑋) → (𝑥 + -𝐽) = (𝑥𝐽))
4443oveq1d 6650 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) = ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
4544oveq2d 6651 . . . 4 ((𝜑𝑥𝑋) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
4645ifeq2d 4096 . . 3 ((𝜑𝑥𝑋) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
4746mpteq2dva 4735 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4828, 41, 473eqtrd 2658 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  Vcvv 3195  ifcif 4077  {cpr 4170   class class class wbr 4644  cmpt 4720  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926   < clt 10059  cmin 10251  -cneg 10252   / cdiv 10669  cn 11005  0cn0 11277  ...cfz 12311  cexp 12843  !cfa 13043  t crest 16062  TopOpenctopn 16063  fldccnfld 19727   D𝑛 cdvn 23609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-icc 12167  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-fac 13044  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612  df-dvn 23613
This theorem is referenced by:  etransclem19  40233  etransclem20  40234  etransclem21  40235  etransclem22  40236
  Copyright terms: Public domain W3C validator