Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdioph Structured version   Visualization version   GIF version

Theorem expdioph 37907
 Description: The exponential function is Diophantine. This result completes and encapsulates our development using Pell equation solution sequences and is sometimes regarded as Matiyasevich's theorem properly. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdioph {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3)

Proof of Theorem expdioph
StepHypRef Expression
1 pm4.42 1024 . . . 4 ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ)))
2 ancom 465 . . . . . 6 (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))
3 elmapi 7921 . . . . . . . . . . . . 13 (𝑎 ∈ (ℕ0𝑚 (1...3)) → 𝑎:(1...3)⟶ℕ0)
4 df-2 11117 . . . . . . . . . . . . . . 15 2 = (1 + 1)
5 df-3 11118 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
6 ssid 3657 . . . . . . . . . . . . . . . 16 (1...3) ⊆ (1...3)
75, 6jm2.27dlem5 37897 . . . . . . . . . . . . . . 15 (1...2) ⊆ (1...3)
84, 7jm2.27dlem5 37897 . . . . . . . . . . . . . 14 (1...1) ⊆ (1...3)
9 1nn 11069 . . . . . . . . . . . . . . 15 1 ∈ ℕ
109jm2.27dlem3 37895 . . . . . . . . . . . . . 14 1 ∈ (1...1)
118, 10sselii 3633 . . . . . . . . . . . . 13 1 ∈ (1...3)
12 ffvelrn 6397 . . . . . . . . . . . . 13 ((𝑎:(1...3)⟶ℕ0 ∧ 1 ∈ (1...3)) → (𝑎‘1) ∈ ℕ0)
133, 11, 12sylancl 695 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘1) ∈ ℕ0)
1413adantr 480 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (𝑎‘1) ∈ ℕ0)
15 elnn0 11332 . . . . . . . . . . 11 ((𝑎‘1) ∈ ℕ0 ↔ ((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0))
1614, 15sylib 208 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0))
17 elnn1uz2 11803 . . . . . . . . . . . 12 ((𝑎‘1) ∈ ℕ ↔ ((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)))
1817biimpi 206 . . . . . . . . . . 11 ((𝑎‘1) ∈ ℕ → ((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)))
1918orim1i 538 . . . . . . . . . 10 (((𝑎‘1) ∈ ℕ ∨ (𝑎‘1) = 0) → (((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0))
2016, 19syl 17 . . . . . . . . 9 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0))
2120biantrurd 528 . . . . . . . 8 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
22 andir 930 . . . . . . . . . 10 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
23 andir 930 . . . . . . . . . . 11 ((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ (((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
2423orbi1i 541 . . . . . . . . . 10 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
2522, 24bitri 264 . . . . . . . . 9 (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
26 nnz 11437 . . . . . . . . . . . . . . . 16 ((𝑎‘2) ∈ ℕ → (𝑎‘2) ∈ ℤ)
27 1exp 12929 . . . . . . . . . . . . . . . 16 ((𝑎‘2) ∈ ℤ → (1↑(𝑎‘2)) = 1)
2826, 27syl 17 . . . . . . . . . . . . . . 15 ((𝑎‘2) ∈ ℕ → (1↑(𝑎‘2)) = 1)
2928adantl 481 . . . . . . . . . . . . . 14 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (1↑(𝑎‘2)) = 1)
3029eqeq2d 2661 . . . . . . . . . . . . 13 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = (1↑(𝑎‘2)) ↔ (𝑎‘3) = 1))
31 oveq1 6697 . . . . . . . . . . . . . . 15 ((𝑎‘1) = 1 → ((𝑎‘1)↑(𝑎‘2)) = (1↑(𝑎‘2)))
3231eqeq2d 2661 . . . . . . . . . . . . . 14 ((𝑎‘1) = 1 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = (1↑(𝑎‘2))))
3332bibi1d 332 . . . . . . . . . . . . 13 ((𝑎‘1) = 1 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1) ↔ ((𝑎‘3) = (1↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
3430, 33syl5ibrcom 237 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) = 1 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
3534pm5.32d 672 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)))
36 iba 523 . . . . . . . . . . . . 13 ((𝑎‘2) ∈ ℕ → ((𝑎‘1) ∈ (ℤ‘2) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ)))
3736adantl 481 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) ∈ (ℤ‘2) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ)))
3837anbi1d 741 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
3935, 38orbi12d 746 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))))
40 0exp 12935 . . . . . . . . . . . . . 14 ((𝑎‘2) ∈ ℕ → (0↑(𝑎‘2)) = 0)
4140adantl 481 . . . . . . . . . . . . 13 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (0↑(𝑎‘2)) = 0)
4241eqeq2d 2661 . . . . . . . . . . . 12 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = (0↑(𝑎‘2)) ↔ (𝑎‘3) = 0))
43 oveq1 6697 . . . . . . . . . . . . . 14 ((𝑎‘1) = 0 → ((𝑎‘1)↑(𝑎‘2)) = (0↑(𝑎‘2)))
4443eqeq2d 2661 . . . . . . . . . . . . 13 ((𝑎‘1) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = (0↑(𝑎‘2))))
4544bibi1d 332 . . . . . . . . . . . 12 ((𝑎‘1) = 0 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 0) ↔ ((𝑎‘3) = (0↑(𝑎‘2)) ↔ (𝑎‘3) = 0)))
4642, 45syl5ibrcom 237 . . . . . . . . . . 11 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘1) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 0)))
4746pm5.32d 672 . . . . . . . . . 10 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))
4839, 47orbi12d 746 . . . . . . . . 9 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((((𝑎‘1) = 1 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ∨ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
4925, 48syl5bb 272 . . . . . . . 8 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → (((((𝑎‘1) = 1 ∨ (𝑎‘1) ∈ (ℤ‘2)) ∨ (𝑎‘1) = 0) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
5021, 49bitrd 268 . . . . . . 7 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘2) ∈ ℕ) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))))
5150pm5.32da 674 . . . . . 6 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))))
522, 51syl5bb 272 . . . . 5 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))))
53 ancom 465 . . . . . 6 (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ) ↔ (¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))
54 2nn 11223 . . . . . . . . . . . 12 2 ∈ ℕ
5554jm2.27dlem3 37895 . . . . . . . . . . 11 2 ∈ (1...2)
567, 55sselii 3633 . . . . . . . . . 10 2 ∈ (1...3)
57 ffvelrn 6397 . . . . . . . . . 10 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
583, 56, 57sylancl 695 . . . . . . . . 9 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘2) ∈ ℕ0)
59 elnn0 11332 . . . . . . . . . . 11 ((𝑎‘2) ∈ ℕ0 ↔ ((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0))
60 pm2.53 387 . . . . . . . . . . 11 (((𝑎‘2) ∈ ℕ ∨ (𝑎‘2) = 0) → (¬ (𝑎‘2) ∈ ℕ → (𝑎‘2) = 0))
6159, 60sylbi 207 . . . . . . . . . 10 ((𝑎‘2) ∈ ℕ0 → (¬ (𝑎‘2) ∈ ℕ → (𝑎‘2) = 0))
62 0nnn 11090 . . . . . . . . . . 11 ¬ 0 ∈ ℕ
63 eleq1 2718 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘2) ∈ ℕ ↔ 0 ∈ ℕ))
6462, 63mtbiri 316 . . . . . . . . . 10 ((𝑎‘2) = 0 → ¬ (𝑎‘2) ∈ ℕ)
6561, 64impbid1 215 . . . . . . . . 9 ((𝑎‘2) ∈ ℕ0 → (¬ (𝑎‘2) ∈ ℕ ↔ (𝑎‘2) = 0))
6658, 65syl 17 . . . . . . . 8 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (¬ (𝑎‘2) ∈ ℕ ↔ (𝑎‘2) = 0))
6766anbi1d 741 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → ((¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))))
6813nn0cnd 11391 . . . . . . . . . . 11 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘1) ∈ ℂ)
6968exp0d 13042 . . . . . . . . . 10 (𝑎 ∈ (ℕ0𝑚 (1...3)) → ((𝑎‘1)↑0) = 1)
7069eqeq2d 2661 . . . . . . . . 9 (𝑎 ∈ (ℕ0𝑚 (1...3)) → ((𝑎‘3) = ((𝑎‘1)↑0) ↔ (𝑎‘3) = 1))
71 oveq2 6698 . . . . . . . . . . 11 ((𝑎‘2) = 0 → ((𝑎‘1)↑(𝑎‘2)) = ((𝑎‘1)↑0))
7271eqeq2d 2661 . . . . . . . . . 10 ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = ((𝑎‘1)↑0)))
7372bibi1d 332 . . . . . . . . 9 ((𝑎‘2) = 0 → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1) ↔ ((𝑎‘3) = ((𝑎‘1)↑0) ↔ (𝑎‘3) = 1)))
7470, 73syl5ibrcom 237 . . . . . . . 8 (𝑎 ∈ (ℕ0𝑚 (1...3)) → ((𝑎‘2) = 0 → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (𝑎‘3) = 1)))
7574pm5.32d 672 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘2) = 0 ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7667, 75bitrd 268 . . . . . 6 (𝑎 ∈ (ℕ0𝑚 (1...3)) → ((¬ (𝑎‘2) ∈ ℕ ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7753, 76syl5bb 272 . . . . 5 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ) ↔ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)))
7852, 77orbi12d 746 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...3)) → ((((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ (𝑎‘2) ∈ ℕ) ∨ ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ∧ ¬ (𝑎‘2) ∈ ℕ)) ↔ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))))
791, 78syl5bb 272 . . 3 (𝑎 ∈ (ℕ0𝑚 (1...3)) → ((𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)) ↔ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))))
8079rabbiia 3215 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} = {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))}
81 3nn0 11348 . . . . 5 3 ∈ ℕ0
82 ovex 6718 . . . . . 6 (1...3) ∈ V
83 mzpproj 37617 . . . . . 6 (((1...3) ∈ V ∧ 2 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3)))
8482, 56, 83mp2an 708 . . . . 5 (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))
85 elnnrabdioph 37688 . . . . 5 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3))
8681, 84, 85mp2an 708 . . . 4 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3)
87 mzpproj 37617 . . . . . . . . 9 (((1...3) ∈ V ∧ 1 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)))
8882, 11, 87mp2an 708 . . . . . . . 8 (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))
89 1z 11445 . . . . . . . . 9 1 ∈ ℤ
90 mzpconstmpt 37620 . . . . . . . . 9 (((1...3) ∈ V ∧ 1 ∈ ℤ) → (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ 1) ∈ (mzPoly‘(1...3)))
9182, 89, 90mp2an 708 . . . . . . . 8 (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))
92 eqrabdioph 37658 . . . . . . . 8 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3)) ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3))
9381, 88, 91, 92mp3an 1464 . . . . . . 7 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3)
94 3nn 11224 . . . . . . . . . 10 3 ∈ ℕ
9594jm2.27dlem3 37895 . . . . . . . . 9 3 ∈ (1...3)
96 mzpproj 37617 . . . . . . . . 9 (((1...3) ∈ V ∧ 3 ∈ (1...3)) → (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)))
9782, 95, 96mp2an 708 . . . . . . . 8 (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))
98 eqrabdioph 37658 . . . . . . . 8 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3)) ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ 1) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3))
9981, 97, 91, 98mp3an 1464 . . . . . . 7 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)
100 anrabdioph 37661 . . . . . . 7 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘1) = 1} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3))
10193, 99, 100mp2an 708 . . . . . 6 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)
102 expdiophlem2 37906 . . . . . 6 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)
103 orrabdioph 37662 . . . . . 6 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) = 1 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3))
104101, 102, 103mp2an 708 . . . . 5 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3)
105 eq0rabdioph 37657 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘1)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3))
10681, 88, 105mp2an 708 . . . . . 6 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3)
107 eq0rabdioph 37657 . . . . . . 7 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘3)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3))
10881, 97, 107mp2an 708 . . . . . 6 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)
109 anrabdioph 37661 . . . . . 6 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘1) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 0} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3))
110106, 108, 109mp2an 708 . . . . 5 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3)
111 orrabdioph 37662 . . . . 5 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3))
112104, 110, 111mp2an 708 . . . 4 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3)
113 anrabdioph 37661 . . . 4 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) ∈ ℕ} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3))
11486, 112, 113mp2an 708 . . 3 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3)
115 eq0rabdioph 37657 . . . . 5 ((3 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑𝑚 (1...3)) ↦ (𝑎‘2)) ∈ (mzPoly‘(1...3))) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3))
11681, 84, 115mp2an 708 . . . 4 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3)
117 anrabdioph 37661 . . . 4 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘2) = 0} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = 1} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3))
118116, 99, 117mp2an 708 . . 3 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)
119 orrabdioph 37662 . . 3 (({𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0)))} ∈ (Dioph‘3) ∧ {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1)} ∈ (Dioph‘3)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))} ∈ (Dioph‘3))
120114, 118, 119mp2an 708 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (((𝑎‘2) ∈ ℕ ∧ ((((𝑎‘1) = 1 ∧ (𝑎‘3) = 1) ∨ (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ) ∧ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2)))) ∨ ((𝑎‘1) = 0 ∧ (𝑎‘3) = 0))) ∨ ((𝑎‘2) = 0 ∧ (𝑎‘3) = 1))} ∈ (Dioph‘3)
12180, 120eqeltri 2726 1 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ (𝑎‘3) = ((𝑎‘1)↑(𝑎‘2))} ∈ (Dioph‘3)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {crab 2945  Vcvv 3231   ↦ cmpt 4762  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  0cc0 9974  1c1 9975  ℕcn 11058  2c2 11108  3c3 11109  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ...cfz 12364  ↑cexp 12900  mzPolycmzp 37602  Diophcdioph 37635 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-numer 15490  df-denom 15491  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-mzpcl 37603  df-mzp 37604  df-dioph 37636  df-squarenn 37722  df-pell1qr 37723  df-pell14qr 37724  df-pell1234qr 37725  df-pellfund 37726  df-rmx 37783  df-rmy 37784 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator