Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodp1 Structured version   Visualization version   GIF version

Theorem hoiprodp1 42955
Description: The dimensional volume of a half-open interval with dimension 𝑛 + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoiprodp1.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoiprodp1.y (𝜑𝑌 ∈ Fin)
hoiprodp1.3 (𝜑𝑍𝑉)
hoiprodp1.z (𝜑 → ¬ 𝑍𝑌)
hoiprodp1.x 𝑋 = (𝑌 ∪ {𝑍})
hoiprodp1.a (𝜑𝐴:𝑋⟶ℝ)
hoiprodp1.b (𝜑𝐵:𝑋⟶ℝ)
hoiprodp1.g 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
hoiprodp1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑘,𝑌   𝑘,𝑍   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)   𝑉(𝑥,𝑘,𝑎,𝑏)   𝑌(𝑥,𝑎,𝑏)   𝑍(𝑥,𝑎,𝑏)

Proof of Theorem hoiprodp1
StepHypRef Expression
1 hoiprodp1.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 hoiprodp1.x . . . 4 𝑋 = (𝑌 ∪ {𝑍})
3 hoiprodp1.y . . . . 5 (𝜑𝑌 ∈ Fin)
4 snfi 8575 . . . . . 6 {𝑍} ∈ Fin
54a1i 11 . . . . 5 (𝜑 → {𝑍} ∈ Fin)
6 unfi 8766 . . . . 5 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
73, 5, 6syl2anc 586 . . . 4 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
82, 7eqeltrid 2915 . . 3 (𝜑𝑋 ∈ Fin)
9 hoiprodp1.3 . . . . . . 7 (𝜑𝑍𝑉)
10 snidg 4580 . . . . . . 7 (𝑍𝑉𝑍 ∈ {𝑍})
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ {𝑍})
12 elun2 4136 . . . . . 6 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍}))
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ (𝑌 ∪ {𝑍}))
1413, 2eleqtrrdi 2922 . . . 4 (𝜑𝑍𝑋)
1514ne0d 4282 . . 3 (𝜑𝑋 ≠ ∅)
16 hoiprodp1.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
17 hoiprodp1.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
181, 8, 15, 16, 17hoidmvn0val 42951 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1916ffvelrnda 6832 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2017ffvelrnda 6832 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
21 volicore 42948 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2219, 20, 21syl2anc 586 . . . 4 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2322recnd 10650 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
24 fveq2 6651 . . . . . 6 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
25 fveq2 6651 . . . . . 6 (𝑘 = 𝑍 → (𝐵𝑘) = (𝐵𝑍))
2624, 25oveq12d 7155 . . . . 5 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑍)[,)(𝐵𝑍)))
2726fveq2d 6655 . . . 4 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
2827adantl 484 . . 3 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
298, 23, 14, 28fprodsplit1 41959 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
302difeq1i 4078 . . . . . . . 8 (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍})
3130a1i 11 . . . . . . 7 (𝜑 → (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍}))
32 difun2 4410 . . . . . . . 8 ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍})
3332a1i 11 . . . . . . 7 (𝜑 → ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍}))
34 hoiprodp1.z . . . . . . . 8 (𝜑 → ¬ 𝑍𝑌)
35 difsn 4712 . . . . . . . 8 𝑍𝑌 → (𝑌 ∖ {𝑍}) = 𝑌)
3634, 35syl 17 . . . . . . 7 (𝜑 → (𝑌 ∖ {𝑍}) = 𝑌)
3731, 33, 363eqtrd 2859 . . . . . 6 (𝜑 → (𝑋 ∖ {𝑍}) = 𝑌)
3837prodeq1d 15255 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
39 hoiprodp1.g . . . . . . 7 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
4039eqcomi 2829 . . . . . 6 𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺
4140a1i 11 . . . . 5 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4238, 41eqtrd 2855 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4342oveq2d 7153 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺))
4416, 14ffvelrnd 6833 . . . . . 6 (𝜑 → (𝐴𝑍) ∈ ℝ)
4517, 14ffvelrnd 6833 . . . . . 6 (𝜑 → (𝐵𝑍) ∈ ℝ)
46 volicore 42948 . . . . . 6 (((𝐴𝑍) ∈ ℝ ∧ (𝐵𝑍) ∈ ℝ) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4744, 45, 46syl2anc 586 . . . . 5 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4847recnd 10650 . . . 4 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℂ)
4916adantr 483 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐴:𝑋⟶ℝ)
50 ssun1 4131 . . . . . . . . . . . 12 𝑌 ⊆ (𝑌 ∪ {𝑍})
5150, 2sseqtrri 3987 . . . . . . . . . . 11 𝑌𝑋
52 id 22 . . . . . . . . . . 11 (𝑘𝑌𝑘𝑌)
5351, 52sseldi 3948 . . . . . . . . . 10 (𝑘𝑌𝑘𝑋)
5453adantl 484 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝑘𝑋)
5549, 54ffvelrnd 6833 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐴𝑘) ∈ ℝ)
5617adantr 483 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐵:𝑋⟶ℝ)
5756, 54ffvelrnd 6833 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐵𝑘) ∈ ℝ)
5855, 57, 21syl2anc 586 . . . . . . 7 ((𝜑𝑘𝑌) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
593, 58fprodrecl 15287 . . . . . 6 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
6039, 59eqeltrid 2915 . . . . 5 (𝜑𝐺 ∈ ℝ)
6160recnd 10650 . . . 4 (𝜑𝐺 ∈ ℂ)
6248, 61mulcomd 10643 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6343, 62eqtrd 2855 . 2 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6418, 29, 633eqtrd 2859 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3916  cun 3917  c0 4274  ifcif 4448  {csn 4548  cmpt 5127  wf 6332  cfv 6336  (class class class)co 7137  cmpo 7139  m cmap 8387  Fincfn 8490  cr 10517  0cc0 10518   · cmul 10523  [,)cico 12722  cprod 15239  volcvol 24042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-inf2 9085  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595  ax-pre-sup 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-of 7390  df-om 7562  df-1st 7670  df-2nd 7671  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-1o 8083  df-2o 8084  df-oadd 8087  df-er 8270  df-map 8389  df-pm 8390  df-en 8491  df-dom 8492  df-sdom 8493  df-fin 8494  df-fi 8856  df-sup 8887  df-inf 8888  df-oi 8955  df-dju 9311  df-card 9349  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-div 11279  df-nn 11620  df-2 11682  df-3 11683  df-n0 11880  df-z 11964  df-uz 12226  df-q 12331  df-rp 12372  df-xneg 12489  df-xadd 12490  df-xmul 12491  df-ioo 12724  df-ico 12726  df-icc 12727  df-fz 12878  df-fzo 13019  df-fl 13147  df-seq 13355  df-exp 13415  df-hash 13676  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-clim 14825  df-rlim 14826  df-sum 15023  df-prod 15240  df-rest 16674  df-topgen 16695  df-psmet 20515  df-xmet 20516  df-met 20517  df-bl 20518  df-mopn 20519  df-top 21480  df-topon 21497  df-bases 21532  df-cmp 21973  df-ovol 24043  df-vol 24044
This theorem is referenced by:  hoidmvlelem2  42963  hoidmvlelem4  42965
  Copyright terms: Public domain W3C validator