MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgmulc2lem1 Structured version   Visualization version   GIF version

Theorem itgmulc2lem1 24432
Description: Lemma for itgmulc2 24434: positive real case. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1 (𝜑𝐶 ∈ ℂ)
itgmulc2.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2.4 (𝜑𝐶 ∈ ℝ)
itgmulc2.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgmulc2.6 (𝜑 → 0 ≤ 𝐶)
itgmulc2.7 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
itgmulc2lem1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2lem1
StepHypRef Expression
1 itgmulc2.5 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgmulc2.7 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3 elrege0 12843 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
41, 2, 3sylanbrc 585 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
5 0e0icopnf 12847 . . . . . . . 8 0 ∈ (0[,)+∞)
65a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
74, 6ifclda 4501 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
87adantr 483 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
98fmpttd 6879 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
10 itgmulc2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
111, 2iblpos 24393 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
1210, 11mpbid 234 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
1312simprd 498 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
14 itgmulc2.4 . . . . 5 (𝜑𝐶 ∈ ℝ)
15 itgmulc2.6 . . . . 5 (𝜑 → 0 ≤ 𝐶)
16 elrege0 12843 . . . . 5 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
1714, 15, 16sylanbrc 585 . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
189, 13, 17itg2mulc 24348 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
19 reex 10628 . . . . . . 7 ℝ ∈ V
2019a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
2114adantr 483 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℝ)
22 fconstmpt 5614 . . . . . . 7 (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶)
2322a1i 11 . . . . . 6 (𝜑 → (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶))
24 eqidd 2822 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2520, 21, 8, 23, 24offval2 7426 . . . . 5 (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))))
26 ovif2 7252 . . . . . . 7 (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0))
27 itgmulc2.1 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
2827mul01d 10839 . . . . . . . . 9 (𝜑 → (𝐶 · 0) = 0)
2928adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐶 · 0) = 0)
3029ifeq2d 4486 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3126, 30syl5eq 2868 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3231mpteq2dva 5161 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3325, 32eqtrd 2856 . . . 4 (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3433fveq2d 6674 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
3518, 34eqtr3d 2858 . 2 (𝜑 → (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
361, 10, 2itgposval 24396 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
3736oveq2d 7172 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
3814adantr 483 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
3938, 1remulcld 10671 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℝ)
40 itgmulc2.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
4127, 40, 10iblmulc2 24431 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
4215adantr 483 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
4338, 1, 42, 2mulge0d 11217 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐶 · 𝐵))
4439, 41, 43itgposval 24396 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
4535, 37, 443eqtr4d 2866 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  ifcif 4467  {csn 4567   class class class wbr 5066  cmpt 5146   × cxp 5553  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  cr 10536  0cc0 10537   · cmul 10542  +∞cpnf 10672  cle 10676  [,)cico 12741  MblFncmbf 24215  2citg2 24217  𝐿1cibl 24218  citg 24219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271
This theorem is referenced by:  itgmulc2lem2  24433
  Copyright terms: Public domain W3C validator