Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itscnhlinecirc02plem3 Structured version   Visualization version   GIF version

Theorem itscnhlinecirc02plem3 44841
Description: Lemma 3 for itscnhlinecirc02p 44842. (Contributed by AV, 10-Mar-2023.)
Hypotheses
Ref Expression
itscnhlinecirc02p.i 𝐼 = {1, 2}
itscnhlinecirc02p.e 𝐸 = (ℝ^‘𝐼)
itscnhlinecirc02p.p 𝑃 = (ℝ ↑m 𝐼)
itscnhlinecirc02p.s 𝑆 = (Sphere‘𝐸)
itscnhlinecirc02p.0 0 = (𝐼 × {0})
itscnhlinecirc02p.l 𝐿 = (LineM𝐸)
itscnhlinecirc02p.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
itscnhlinecirc02plem3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))

Proof of Theorem itscnhlinecirc02plem3
StepHypRef Expression
1 itscnhlinecirc02p.i . . . . . 6 𝐼 = {1, 2}
2 itscnhlinecirc02p.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pxel 44768 . . . . 5 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
41, 2rrx2pyel 44769 . . . . 5 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
53, 4jca 514 . . . 4 (𝑋𝑃 → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
653ad2ant1 1128 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
76adantr 483 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
81, 2rrx2pxel 44768 . . . . 5 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
91, 2rrx2pyel 44769 . . . . 5 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
108, 9jca 514 . . . 4 (𝑌𝑃 → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
11103ad2ant2 1129 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
1211adantr 483 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ))
13 simpl3 1188 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (𝑋‘2) ≠ (𝑌‘2))
14 rpre 12391 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
1514adantr 483 . . 3 ((𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅) → 𝑅 ∈ ℝ)
1615adantl 484 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 𝑅 ∈ ℝ)
17 simpl1 1186 . . . . . 6 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑋𝑃)
18 itscnhlinecirc02p.e . . . . . . . 8 𝐸 = (ℝ^‘𝐼)
19 2nn0 11908 . . . . . . . . . 10 2 ∈ ℕ0
20 eqid 2820 . . . . . . . . . . 11 (𝔼hil‘2) = (𝔼hil‘2)
2120ehlval 24010 . . . . . . . . . 10 (2 ∈ ℕ0 → (𝔼hil‘2) = (ℝ^‘(1...2)))
2219, 21ax-mp 5 . . . . . . . . 9 (𝔼hil‘2) = (ℝ^‘(1...2))
23 fz12pr 12961 . . . . . . . . . . 11 (1...2) = {1, 2}
2423, 1eqtr4i 2846 . . . . . . . . . 10 (1...2) = 𝐼
2524fveq2i 6666 . . . . . . . . 9 (ℝ^‘(1...2)) = (ℝ^‘𝐼)
2622, 25eqtri 2843 . . . . . . . 8 (𝔼hil‘2) = (ℝ^‘𝐼)
2718, 26eqtr4i 2846 . . . . . . 7 𝐸 = (𝔼hil‘2)
281oveq2i 7160 . . . . . . . 8 (ℝ ↑m 𝐼) = (ℝ ↑m {1, 2})
292, 28eqtri 2843 . . . . . . 7 𝑃 = (ℝ ↑m {1, 2})
30 itscnhlinecirc02p.d . . . . . . 7 𝐷 = (dist‘𝐸)
31 itscnhlinecirc02p.0 . . . . . . . 8 0 = (𝐼 × {0})
321xpeq1i 5574 . . . . . . . 8 (𝐼 × {0}) = ({1, 2} × {0})
3331, 32eqtri 2843 . . . . . . 7 0 = ({1, 2} × {0})
3427, 29, 30, 33ehl2eudisval0 44782 . . . . . 6 (𝑋𝑃 → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3517, 34syl 17 . . . . 5 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋𝐷 0 ) = (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))))
3635breq1d 5069 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅))
37 rpge0 12396 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
3814, 37sqrtsqd 14772 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (√‘(𝑅↑2)) = 𝑅)
3938eqcomd 2826 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 = (√‘(𝑅↑2)))
4039adantl 484 . . . . . . . 8 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 = (√‘(𝑅↑2)))
4140breq2d 5071 . . . . . . 7 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
4241biimpa 479 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2)))
4317, 3syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘1) ∈ ℝ)
4443adantr 483 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘1) ∈ ℝ)
4544resqcld 13608 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘1)↑2) ∈ ℝ)
4617, 4syl 17 . . . . . . . . . 10 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → (𝑋‘2) ∈ ℝ)
4746adantr 483 . . . . . . . . 9 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑋‘2) ∈ ℝ)
4847resqcld 13608 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((𝑋‘2)↑2) ∈ ℝ)
4945, 48readdcld 10663 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) ∈ ℝ)
5044sqge0d 13609 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘1)↑2))
5147sqge0d 13609 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ ((𝑋‘2)↑2))
5245, 48, 50, 51addge0d 11209 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)))
5314adantl 484 . . . . . . . . 9 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈ ℝ)
5453adantr 483 . . . . . . . 8 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 𝑅 ∈ ℝ)
5554resqcld 13608 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (𝑅↑2) ∈ ℝ)
5654sqge0d 13609 . . . . . . 7 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → 0 ≤ (𝑅↑2))
5749, 52, 55, 56sqrtltd 14780 . . . . . 6 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2) ↔ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < (√‘(𝑅↑2))))
5842, 57mpbird 259 . . . . 5 ((((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) ∧ (√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
5958ex 415 . . . 4 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((√‘(((𝑋‘1)↑2) + ((𝑋‘2)↑2))) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6036, 59sylbid 242 . . 3 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ 𝑅 ∈ ℝ+) → ((𝑋𝐷 0 ) < 𝑅 → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2)))
6160impr 457 . 2 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))
62 eqid 2820 . . 3 ((𝑌‘1) − (𝑋‘1)) = ((𝑌‘1) − (𝑋‘1))
63 eqid 2820 . . 3 ((𝑋‘2) − (𝑌‘2)) = ((𝑋‘2) − (𝑌‘2))
64 eqid 2820 . . 3 (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2))) = (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))
6562, 63, 64itscnhlinecirc02plem2 44840 . 2 (((((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ) ∧ ((𝑌‘1) ∈ ℝ ∧ (𝑌‘2) ∈ ℝ) ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) < (𝑅↑2))) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
667, 12, 13, 16, 61, 65syl32anc 1373 1 (((𝑋𝑃𝑌𝑃 ∧ (𝑋‘2) ≠ (𝑌‘2)) ∧ (𝑅 ∈ ℝ+ ∧ (𝑋𝐷 0 ) < 𝑅)) → 0 < ((-(2 · (((𝑌‘1) − (𝑋‘1)) · (((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))))↑2) − (4 · (((((𝑋‘2) − (𝑌‘2))↑2) + (((𝑌‘1) − (𝑋‘1))↑2)) · (((((𝑋‘2) · (𝑌‘1)) − ((𝑋‘1) · (𝑌‘2)))↑2) − ((((𝑋‘2) − (𝑌‘2))↑2) · (𝑅↑2)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  wne 3015  {csn 4560  {cpr 4562   class class class wbr 5059   × cxp 5546  cfv 6348  (class class class)co 7149  m cmap 8399  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cmin 10863  -cneg 10864  2c2 11686  4c4 11688  0cn0 11891  +crp 12383  ...cfz 12889  cexp 13426  csqrt 14585  distcds 16567  ℝ^crrx 23979  𝔼hilcehl 23980  LineMcline 44784  Spherecsph 44785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-sup 8899  df-oi 8967  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-fz 12890  df-fzo 13031  df-seq 13367  df-exp 13427  df-hash 13688  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-starv 16573  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-unif 16581  df-hom 16582  df-cco 16583  df-0g 16708  df-gsum 16709  df-prds 16714  df-pws 16716  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-mhm 17949  df-grp 18099  df-minusg 18100  df-sbg 18101  df-subg 18269  df-ghm 18349  df-cntz 18440  df-cmn 18901  df-abl 18902  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19366  df-dvdsr 19384  df-unit 19385  df-invr 19415  df-dvr 19426  df-rnghom 19460  df-drng 19497  df-field 19498  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20539  df-refld 20742  df-dsmm 20869  df-frlm 20884  df-nm 23185  df-tng 23187  df-tcph 23766  df-rrx 23981  df-ehl 23982
This theorem is referenced by:  itscnhlinecirc02p  44842
  Copyright terms: Public domain W3C validator