MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2a Structured version   Visualization version   GIF version

Theorem leexp2a 12856
Description: Weak ordering relationship for exponentiation. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
leexp2a ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))

Proof of Theorem leexp2a
StepHypRef Expression
1 simp1 1059 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ)
2 0red 9985 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 ∈ ℝ)
3 1red 9999 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
4 0lt1 10494 . . . . . . . . 9 0 < 1
54a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 1)
6 simp2 1060 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ 𝐴)
72, 3, 1, 5, 6ltletrd 10141 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 0 < 𝐴)
81, 7elrpd 11813 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℝ+)
9 eluzel2 11636 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1093ad2ant3 1082 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
11 rpexpcl 12819 . . . . . 6 ((𝐴 ∈ ℝ+𝑀 ∈ ℤ) → (𝐴𝑀) ∈ ℝ+)
128, 10, 11syl2anc 692 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ+)
1312rpred 11816 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℝ)
1413recnd 10012 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ∈ ℂ)
1514mulid2d 10002 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) = (𝐴𝑀))
16 uznn0sub 11663 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
17163ad2ant3 1082 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝑁𝑀) ∈ ℕ0)
18 expge1 12837 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑁𝑀) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁𝑀)))
191, 17, 6, 18syl3anc 1323 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ (𝐴↑(𝑁𝑀)))
201recnd 10012 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
217gt0ne0d 10536 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝐴 ≠ 0)
22 eluzelz 11641 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
23223ad2ant3 1082 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
24 expsub 12848 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2520, 21, 23, 10, 24syl22anc 1324 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴↑(𝑁𝑀)) = ((𝐴𝑁) / (𝐴𝑀)))
2619, 25breqtrd 4639 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → 1 ≤ ((𝐴𝑁) / (𝐴𝑀)))
27 rpexpcl 12819 . . . . . 6 ((𝐴 ∈ ℝ+𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ+)
288, 23, 27syl2anc 692 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ+)
2928rpred 11816 . . . 4 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑁) ∈ ℝ)
303, 29, 12lemuldivd 11865 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → ((1 · (𝐴𝑀)) ≤ (𝐴𝑁) ↔ 1 ≤ ((𝐴𝑁) / (𝐴𝑀))))
3126, 30mpbird 247 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (1 · (𝐴𝑀)) ≤ (𝐴𝑁))
3215, 31eqbrtrrd 4637 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴𝑁 ∈ (ℤ𝑀)) → (𝐴𝑀) ≤ (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  0cn0 11236  cz 11321  cuz 11631  +crp 11776  cexp 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801
This theorem is referenced by:  expnlbnd2  12935  digit1  12938  leexp2ad  12981  faclbnd4lem1  13020  climcndslem1  14506  climcndslem2  14507  ef01bndlem  14839  aaliou3lem2  24002
  Copyright terms: Public domain W3C validator