MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climcndslem1 Structured version   Visualization version   GIF version

Theorem climcndslem1 15199
Description: Lemma for climcnds 15201: bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
climcnds.1 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
climcnds.2 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐹𝑘))
climcnds.3 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climcnds.4 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
Assertion
Ref Expression
climcndslem1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝑛,𝐹   𝑘,𝐺,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝑁(𝑘,𝑛)

Proof of Theorem climcndslem1
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7156 . . . . . . . . . . 11 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
2 0p1e1 11753 . . . . . . . . . . 11 (0 + 1) = 1
31, 2syl6eq 2871 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 + 1) = 1)
43oveq2d 7165 . . . . . . . . 9 (𝑥 = 0 → (2↑(𝑥 + 1)) = (2↑1))
5 2cn 11706 . . . . . . . . . . 11 2 ∈ ℂ
6 exp1 13432 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
75, 6ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
8 df-2 11694 . . . . . . . . . 10 2 = (1 + 1)
97, 8eqtri 2843 . . . . . . . . 9 (2↑1) = (1 + 1)
104, 9syl6eq 2871 . . . . . . . 8 (𝑥 = 0 → (2↑(𝑥 + 1)) = (1 + 1))
1110oveq1d 7164 . . . . . . 7 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = ((1 + 1) − 1))
12 ax-1cn 10588 . . . . . . . 8 1 ∈ ℂ
1312, 12pncan3oi 10895 . . . . . . 7 ((1 + 1) − 1) = 1
1411, 13syl6eq 2871 . . . . . 6 (𝑥 = 0 → ((2↑(𝑥 + 1)) − 1) = 1)
1514fveq2d 6667 . . . . 5 (𝑥 = 0 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘1))
16 fveq2 6663 . . . . 5 (𝑥 = 0 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘0))
1715, 16breq12d 5072 . . . 4 (𝑥 = 0 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0)))
1817imbi2d 343 . . 3 (𝑥 = 0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))))
19 oveq1 7156 . . . . . . 7 (𝑥 = 𝑗 → (𝑥 + 1) = (𝑗 + 1))
2019oveq2d 7165 . . . . . 6 (𝑥 = 𝑗 → (2↑(𝑥 + 1)) = (2↑(𝑗 + 1)))
2120fvoveq1d 7171 . . . . 5 (𝑥 = 𝑗 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
22 fveq2 6663 . . . . 5 (𝑥 = 𝑗 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑗))
2321, 22breq12d 5072 . . . 4 (𝑥 = 𝑗 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)))
2423imbi2d 343 . . 3 (𝑥 = 𝑗 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗))))
25 oveq1 7156 . . . . . . 7 (𝑥 = (𝑗 + 1) → (𝑥 + 1) = ((𝑗 + 1) + 1))
2625oveq2d 7165 . . . . . 6 (𝑥 = (𝑗 + 1) → (2↑(𝑥 + 1)) = (2↑((𝑗 + 1) + 1)))
2726fvoveq1d 7171 . . . . 5 (𝑥 = (𝑗 + 1) → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
28 fveq2 6663 . . . . 5 (𝑥 = (𝑗 + 1) → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘(𝑗 + 1)))
2927, 28breq12d 5072 . . . 4 (𝑥 = (𝑗 + 1) → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
3029imbi2d 343 . . 3 (𝑥 = (𝑗 + 1) → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
31 oveq1 7156 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 + 1) = (𝑁 + 1))
3231oveq2d 7165 . . . . . 6 (𝑥 = 𝑁 → (2↑(𝑥 + 1)) = (2↑(𝑁 + 1)))
3332fvoveq1d 7171 . . . . 5 (𝑥 = 𝑁 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) = (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)))
34 fveq2 6663 . . . . 5 (𝑥 = 𝑁 → (seq0( + , 𝐺)‘𝑥) = (seq0( + , 𝐺)‘𝑁))
3533, 34breq12d 5072 . . . 4 (𝑥 = 𝑁 → ((seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥) ↔ (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
3635imbi2d 343 . . 3 (𝑥 = 𝑁 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑥 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑥)) ↔ (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))))
37 fveq2 6663 . . . . . . . 8 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
3837eleq1d 2896 . . . . . . 7 (𝑘 = 1 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘1) ∈ ℝ))
39 climcnds.1 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
4039ralrimiva 3181 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
41 1nn 11642 . . . . . . . 8 1 ∈ ℕ
4241a1i 11 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
4338, 40, 42rspcdva 3622 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ)
4443leidd 11199 . . . . 5 (𝜑 → (𝐹‘1) ≤ (𝐹‘1))
4543recnd 10662 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℂ)
4645mulid2d 10652 . . . . 5 (𝜑 → (1 · (𝐹‘1)) = (𝐹‘1))
4744, 46breqtrrd 5087 . . . 4 (𝜑 → (𝐹‘1) ≤ (1 · (𝐹‘1)))
48 1z 12006 . . . . 5 1 ∈ ℤ
49 eqidd 2821 . . . . 5 (𝜑 → (𝐹‘1) = (𝐹‘1))
5048, 49seq1i 13380 . . . 4 (𝜑 → (seq1( + , 𝐹)‘1) = (𝐹‘1))
51 0z 11986 . . . . 5 0 ∈ ℤ
52 fveq2 6663 . . . . . . 7 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
53 oveq2 7157 . . . . . . . . 9 (𝑛 = 0 → (2↑𝑛) = (2↑0))
54 exp0 13430 . . . . . . . . . 10 (2 ∈ ℂ → (2↑0) = 1)
555, 54ax-mp 5 . . . . . . . . 9 (2↑0) = 1
5653, 55syl6eq 2871 . . . . . . . 8 (𝑛 = 0 → (2↑𝑛) = 1)
5756fveq2d 6667 . . . . . . . 8 (𝑛 = 0 → (𝐹‘(2↑𝑛)) = (𝐹‘1))
5856, 57oveq12d 7167 . . . . . . 7 (𝑛 = 0 → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = (1 · (𝐹‘1)))
5952, 58eqeq12d 2836 . . . . . 6 (𝑛 = 0 → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘0) = (1 · (𝐹‘1))))
60 climcnds.4 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
6160ralrimiva 3181 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
62 0nn0 11906 . . . . . . 7 0 ∈ ℕ0
6362a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
6459, 61, 63rspcdva 3622 . . . . 5 (𝜑 → (𝐺‘0) = (1 · (𝐹‘1)))
6551, 64seq1i 13380 . . . 4 (𝜑 → (seq0( + , 𝐺)‘0) = (1 · (𝐹‘1)))
6647, 50, 653brtr4d 5091 . . 3 (𝜑 → (seq1( + , 𝐹)‘1) ≤ (seq0( + , 𝐺)‘0))
67 fzfid 13338 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
68 simpl 485 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → 𝜑)
69 2nn 11704 . . . . . . . . . . . 12 2 ∈ ℕ
70 peano2nn0 11931 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ0)
7170adantl 484 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ0)
72 nnexpcl 13439 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
7369, 71, 72sylancr 589 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℕ)
74 elfzuz 12901 . . . . . . . . . . 11 (𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
75 eluznn 12312 . . . . . . . . . . 11 (((2↑(𝑗 + 1)) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑘 ∈ ℕ)
7673, 74, 75syl2an 597 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → 𝑘 ∈ ℕ)
7768, 76, 39syl2an2r 683 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
78 fveq2 6663 . . . . . . . . . . . 12 (𝑘 = (2↑(𝑗 + 1)) → (𝐹𝑘) = (𝐹‘(2↑(𝑗 + 1))))
7978eleq1d 2896 . . . . . . . . . . 11 (𝑘 = (2↑(𝑗 + 1)) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ))
8040adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
8179, 80, 73rspcdva 3622 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
8281adantr 483 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℝ)
83 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1))))
84 simplll 773 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝜑)
8573adantr 483 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (2↑(𝑗 + 1)) ∈ ℕ)
86 elfzuz 12901 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...𝑛) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
8785, 86, 75syl2an 597 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → 𝑘 ∈ ℕ)
8884, 87, 39syl2anc 586 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...𝑛)) → (𝐹𝑘) ∈ ℝ)
89 simplll 773 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝜑)
90 elfzuz 12901 . . . . . . . . . . . . . 14 (𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1)) → 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1))))
9185, 90, 75syl2an 597 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → 𝑘 ∈ ℕ)
92 climcnds.3 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9389, 91, 92syl2anc 586 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...(𝑛 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
9483, 88, 93monoord2 13398 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
9594ralrimiva 3181 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))))
96 fveq2 6663 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
9796breq1d 5069 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ↔ (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1)))))
9897rspccva 3619 . . . . . . . . . 10 ((∀𝑛 ∈ (ℤ‘(2↑(𝑗 + 1)))(𝐹𝑛) ≤ (𝐹‘(2↑(𝑗 + 1))) ∧ 𝑘 ∈ (ℤ‘(2↑(𝑗 + 1)))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
9995, 74, 98syl2an 597 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ≤ (𝐹‘(2↑(𝑗 + 1))))
10067, 77, 82, 99fsumle 15149 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
101 fzfid 13338 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑(𝑗 + 1)) − 1)) ∈ Fin)
102 hashcl 13714 . . . . . . . . . . . . 13 ((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
103101, 102syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℕ0)
104103nn0cnd 11951 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) ∈ ℂ)
10573nnred 11646 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
106105recnd 10662 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℂ)
107 hashcl 13714 . . . . . . . . . . . . 13 (((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
10867, 107syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℕ0)
109108nn0cnd 11951 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) ∈ ℂ)
110 2z 12008 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℤ
111 zexpcl 13441 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
112110, 71, 111sylancr 589 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℤ)
113 2re 11705 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
114 1le2 11840 . . . . . . . . . . . . . . . . . . . . 21 1 ≤ 2
115 nn0p1nn 11930 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
116115adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℕ)
117 nnuz 12275 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
118116, 117eleqtrdi 2922 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ (ℤ‘1))
119 leexp2a 13533 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ (𝑗 + 1) ∈ (ℤ‘1)) → (2↑1) ≤ (2↑(𝑗 + 1)))
120113, 114, 118, 119mp3an12i 1460 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ ℕ0) → (2↑1) ≤ (2↑(𝑗 + 1)))
1217, 120eqbrtrrid 5095 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → 2 ≤ (2↑(𝑗 + 1)))
122110eluz1i 12245 . . . . . . . . . . . . . . . . . . 19 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) ↔ ((2↑(𝑗 + 1)) ∈ ℤ ∧ 2 ≤ (2↑(𝑗 + 1))))
123112, 121, 122sylanbrc 585 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ (ℤ‘2))
124 uz2m1nn 12317 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ (ℤ‘2) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
125123, 124syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ)
126125, 117eleqtrdi 2922 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1))
127 peano2zm 12019 . . . . . . . . . . . . . . . . . 18 ((2↑(𝑗 + 1)) ∈ ℤ → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
128112, 127syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℤ)
129 peano2nn0 11931 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 + 1) ∈ ℕ0 → ((𝑗 + 1) + 1) ∈ ℕ0)
13071, 129syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → ((𝑗 + 1) + 1) ∈ ℕ0)
131 zexpcl 13441 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ ((𝑗 + 1) + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
132110, 130, 131sylancr 589 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℤ)
133 peano2zm 12019 . . . . . . . . . . . . . . . . . 18 ((2↑((𝑗 + 1) + 1)) ∈ ℤ → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
134132, 133syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ)
135112zred 12081 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ∈ ℝ)
136132zred 12081 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) ∈ ℝ)
137 1red 10635 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℝ)
13871nn0zd 12079 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℕ0) → (𝑗 + 1) ∈ ℤ)
139 uzid 12252 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ ℤ → (𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)))
140 peano2uz 12295 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ (ℤ‘(𝑗 + 1)) → ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
141 leexp2a 13533 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ ((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1))) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
142113, 114, 141mp3an12 1446 . . . . . . . . . . . . . . . . . . 19 (((𝑗 + 1) + 1) ∈ (ℤ‘(𝑗 + 1)) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
143138, 139, 140, 1424syl 19 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) ≤ (2↑((𝑗 + 1) + 1)))
144135, 136, 137, 143lesub1dd 11249 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1))
145 eluz2 12243 . . . . . . . . . . . . . . . . 17 (((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ ℤ ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℤ ∧ ((2↑(𝑗 + 1)) − 1) ≤ ((2↑((𝑗 + 1) + 1)) − 1)))
146128, 134, 144, 145syl3anbrc 1338 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)))
147 elfzuzb 12899 . . . . . . . . . . . . . . . 16 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) ↔ (((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1) ∧ ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1))))
148126, 146, 147sylanbrc 585 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)))
149 fzsplit 12930 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
150148, 149syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))))
151 npcan 10888 . . . . . . . . . . . . . . . . 17 (((2↑(𝑗 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
152106, 12, 151sylancl 588 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) − 1) + 1) = (2↑(𝑗 + 1)))
153152oveq1d 7164 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1)) = ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))
154153uneq2d 4132 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((((2↑(𝑗 + 1)) − 1) + 1)...((2↑((𝑗 + 1) + 1)) − 1))) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
155150, 154eqtrd 2855 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) = ((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
156155fveq2d 6667 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
157 expp1 13433 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ (𝑗 + 1) ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
1585, 71, 157sylancr 589 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) · 2))
159106times2d 11875 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · 2) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
160158, 159eqtrd 2855 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → (2↑((𝑗 + 1) + 1)) = ((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))))
161160oveq1d 7164 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1))
162 1cnd 10629 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → 1 ∈ ℂ)
163106, 106, 162addsubd 11011 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (((2↑(𝑗 + 1)) + (2↑(𝑗 + 1))) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
164161, 163eqtrd 2855 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
165 uztrn 12255 . . . . . . . . . . . . . . . . 17 ((((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘((2↑(𝑗 + 1)) − 1)) ∧ ((2↑(𝑗 + 1)) − 1) ∈ (ℤ‘1)) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
166146, 126, 165syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ (ℤ‘1))
167166, 117eleqtrrdi 2923 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ)
168167nnnn0d 11949 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0)
169 hashfz1 13703 . . . . . . . . . . . . . 14 (((2↑((𝑗 + 1) + 1)) − 1) ∈ ℕ0 → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
170168, 169syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((2↑((𝑗 + 1) + 1)) − 1))
171125nnnn0d 11949 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) ∈ ℕ0)
172 hashfz1 13703 . . . . . . . . . . . . . . 15 (((2↑(𝑗 + 1)) − 1) ∈ ℕ0 → (♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
173171, 172syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑(𝑗 + 1)) − 1))) = ((2↑(𝑗 + 1)) − 1))
174173oveq1d 7164 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = (((2↑(𝑗 + 1)) − 1) + (2↑(𝑗 + 1))))
175164, 170, 1743eqtr4d 2865 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘(1...((2↑((𝑗 + 1) + 1)) − 1))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))))
176105ltm1d 11565 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)))
177 fzdisj 12931 . . . . . . . . . . . . . 14 (((2↑(𝑗 + 1)) − 1) < (2↑(𝑗 + 1)) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
178176, 177syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅)
179 hashun 13740 . . . . . . . . . . . . 13 (((1...((2↑(𝑗 + 1)) − 1)) ∈ Fin ∧ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ ((1...((2↑(𝑗 + 1)) − 1)) ∩ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) = ∅) → (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
180101, 67, 178, 179syl3anc 1366 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (♯‘((1...((2↑(𝑗 + 1)) − 1)) ∪ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
181156, 175, 1803eqtr3d 2863 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (2↑(𝑗 + 1))) = ((♯‘(1...((2↑(𝑗 + 1)) − 1))) + (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)))))
182104, 106, 109, 181addcanad 10838 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (2↑(𝑗 + 1)) = (♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))))
183182oveq1d 7164 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
184 fveq2 6663 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → (𝐺𝑛) = (𝐺‘(𝑗 + 1)))
185 oveq2 7157 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (2↑𝑛) = (2↑(𝑗 + 1)))
186185fveq2d 6667 . . . . . . . . . . . 12 (𝑛 = (𝑗 + 1) → (𝐹‘(2↑𝑛)) = (𝐹‘(2↑(𝑗 + 1))))
187185, 186oveq12d 7167 . . . . . . . . . . 11 (𝑛 = (𝑗 + 1) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
188184, 187eqeq12d 2836 . . . . . . . . . 10 (𝑛 = (𝑗 + 1) → ((𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))) ↔ (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1))))))
18961adantr 483 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ∀𝑛 ∈ ℕ0 (𝐺𝑛) = ((2↑𝑛) · (𝐹‘(2↑𝑛))))
190188, 189, 71rspcdva 3622 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))))
19181recnd 10662 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ)
192 fsumconst 15140 . . . . . . . . . 10 ((((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin ∧ (𝐹‘(2↑(𝑗 + 1))) ∈ ℂ) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
19367, 191, 192syl2anc 586 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))) = ((♯‘((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))) · (𝐹‘(2↑(𝑗 + 1)))))
194183, 190, 1933eqtr4d 2865 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) = Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹‘(2↑(𝑗 + 1))))
195100, 194breqtrrd 5087 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1)))
196 elfznn 12933 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1)) → 𝑘 ∈ ℕ)
19768, 196, 39syl2an 597 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℝ)
198101, 197fsumrecl 15086 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ)
19967, 77fsumrecl 15086 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ)
200 nn0uz 12274 . . . . . . . . . 10 0 = (ℤ‘0)
201 0zd 11987 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
202 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
203 nnexpcl 13439 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
20469, 202, 203sylancr 589 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
205204nnred 11646 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℝ)
206 fveq2 6663 . . . . . . . . . . . . . 14 (𝑘 = (2↑𝑛) → (𝐹𝑘) = (𝐹‘(2↑𝑛)))
207206eleq1d 2896 . . . . . . . . . . . . 13 (𝑘 = (2↑𝑛) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(2↑𝑛)) ∈ ℝ))
20840adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℝ)
209207, 208, 204rspcdva 3622 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ0) → (𝐹‘(2↑𝑛)) ∈ ℝ)
210205, 209remulcld 10664 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ0) → ((2↑𝑛) · (𝐹‘(2↑𝑛))) ∈ ℝ)
21160, 210eqeltrd 2912 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → (𝐺𝑛) ∈ ℝ)
212200, 201, 211serfre 13396 . . . . . . . . 9 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℝ)
213212ffvelrnda 6844 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑗) ∈ ℝ)
214135, 81remulcld 10664 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((2↑(𝑗 + 1)) · (𝐹‘(2↑(𝑗 + 1)))) ∈ ℝ)
215190, 214eqeltrd 2912 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑗 + 1)) ∈ ℝ)
216 le2add 11115 . . . . . . . 8 (((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ∈ ℝ ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ∈ ℝ) ∧ ((seq0( + , 𝐺)‘𝑗) ∈ ℝ ∧ (𝐺‘(𝑗 + 1)) ∈ ℝ)) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
217198, 199, 213, 215, 216syl22anc 836 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) ∧ Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) ≤ (𝐺‘(𝑗 + 1))) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
218195, 217mpan2d 692 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗) → (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
219 eqidd 2821 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
22039recnd 10662 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
22168, 196, 220syl2an 597 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
222219, 126, 221fsumser 15082 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)))
223222eqcomd 2826 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) = Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘))
224223breq1d 5069 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) ↔ Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) ≤ (seq0( + , 𝐺)‘𝑗)))
225 eqidd 2821 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) = (𝐹𝑘))
226 elfznn 12933 . . . . . . . . . 10 (𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1)) → 𝑘 ∈ ℕ)
22768, 226, 220syl2an 597 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ0) ∧ 𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))) → (𝐹𝑘) ∈ ℂ)
228225, 166, 227fsumser 15082 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)))
229 fzfid 13338 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (1...((2↑((𝑗 + 1) + 1)) − 1)) ∈ Fin)
230178, 155, 229, 227fsumsplit 15092 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ (1...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
231228, 230eqtr3d 2857 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) = (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)))
232 simpr 487 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
233232, 200eleqtrdi 2922 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ (ℤ‘0))
234 seqp1 13381 . . . . . . . 8 (𝑗 ∈ (ℤ‘0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
235233, 234syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (seq0( + , 𝐺)‘(𝑗 + 1)) = ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1))))
236231, 235breq12d 5072 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)) ↔ (Σ𝑘 ∈ (1...((2↑(𝑗 + 1)) − 1))(𝐹𝑘) + Σ𝑘 ∈ ((2↑(𝑗 + 1))...((2↑((𝑗 + 1) + 1)) − 1))(𝐹𝑘)) ≤ ((seq0( + , 𝐺)‘𝑗) + (𝐺‘(𝑗 + 1)))))
237218, 224, 2363imtr4d 296 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1))))
238237expcom 416 . . . 4 (𝑗 ∈ ℕ0 → (𝜑 → ((seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗) → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
239238a2d 29 . . 3 (𝑗 ∈ ℕ0 → ((𝜑 → (seq1( + , 𝐹)‘((2↑(𝑗 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑗)) → (𝜑 → (seq1( + , 𝐹)‘((2↑((𝑗 + 1) + 1)) − 1)) ≤ (seq0( + , 𝐺)‘(𝑗 + 1)))))
24018, 24, 30, 36, 66, 239nn0ind 12071 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁)))
241240impcom 410 1 ((𝜑𝑁 ∈ ℕ0) → (seq1( + , 𝐹)‘((2↑(𝑁 + 1)) − 1)) ≤ (seq0( + , 𝐺)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3137  cun 3927  cin 3928  c0 4284   class class class wbr 5059  cfv 6348  (class class class)co 7149  Fincfn 8502  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863  cn 11631  2c2 11686  0cn0 11891  cz 11975  cuz 12237  ...cfz 12889  seqcseq 13366  cexp 13426  chash 13687  Σcsu 15037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-oi 8967  df-dju 9323  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12890  df-fzo 13031  df-seq 13367  df-exp 13427  df-hash 13688  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038
This theorem is referenced by:  climcnds  15201
  Copyright terms: Public domain W3C validator