MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatmul Structured version   Visualization version   GIF version

Theorem mat2pmatmul 20455
Description: The transformation of matrices into polynomial matrices preserves the multiplication. (Contributed by AV, 29-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatmul ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑁,𝑦   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝑥,𝑇,𝑦   𝑥,𝐴,𝑦   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦

Proof of Theorem mat2pmatmul
Dummy variables 𝑚 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.a . . . . . . . . . . . . 13 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2621 . . . . . . . . . . . . 13 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
31, 2matmulr 20163 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
43eqcomd 2627 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (.r𝐴) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
54oveqdr 6628 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦))
6 eqid 2621 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2621 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
8 crngring 18479 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
98ad2antlr 762 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ Ring)
10 simpll 789 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
11 mat2pmatbas.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐴)
1211eleq2i 2690 . . . . . . . . . . . . . . 15 (𝑥𝐵𝑥 ∈ (Base‘𝐴))
1312biimpi 206 . . . . . . . . . . . . . 14 (𝑥𝐵𝑥 ∈ (Base‘𝐴))
1413adantr 481 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵) → 𝑥 ∈ (Base‘𝐴))
1514adantl 482 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐴))
161, 6matbas2 20146 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
1716adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
1815, 17eleqtrrd 2701 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
1911eleq2i 2690 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ (Base‘𝐴))
2019biimpi 206 . . . . . . . . . . . . 13 (𝑦𝐵𝑦 ∈ (Base‘𝐴))
2120ad2antll 764 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐴))
2216eleq2d 2684 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ↔ 𝑦 ∈ (Base‘𝐴)))
2322adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ↔ 𝑦 ∈ (Base‘𝐴)))
2421, 23mpbird 247 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
252, 6, 7, 9, 10, 10, 10, 18, 24mamuval 20111 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
265, 25eqtrd 2655 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
27263ad2ant1 1080 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑥(.r𝐴)𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))))))
28 oveq1 6611 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑖𝑥𝑚) = (𝑘𝑥𝑚))
29 oveq2 6612 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑚𝑦𝑗) = (𝑚𝑦𝑙))
3028, 29oveqan12d 6623 . . . . . . . . . . 11 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)) = ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))
3130mpteq2dv 4705 . . . . . . . . . 10 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗))) = (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))
3231oveq2d 6620 . . . . . . . . 9 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)))) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
3332adantl 482 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ (𝑖 = 𝑘𝑗 = 𝑙)) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑖𝑥𝑚)(.r𝑅)(𝑚𝑦𝑗)))) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
34 simp2 1060 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑘𝑁)
35 simp3 1061 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑙𝑁)
36 ovex 6632 . . . . . . . . 9 (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))) ∈ V
3736a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))) ∈ V)
3827, 33, 34, 35, 37ovmpt2d 6741 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑘(𝑥(.r𝐴)𝑦)𝑙) = (𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))))
3938fveq2d 6152 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙)) = ((algSc‘𝑃)‘(𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))))
40 eqid 2621 . . . . . . 7 (0g𝑅) = (0g𝑅)
41 ringcmn 18502 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
428, 41syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ CMnd)
4342ad2antlr 762 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑅 ∈ CMnd)
44433ad2ant1 1080 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑅 ∈ CMnd)
45 mat2pmatbas.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
4645ply1ring 19537 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
478, 46syl 17 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
48 ringmnd 18477 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Mnd)
4947, 48syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ Mnd)
5049ad2antlr 762 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Mnd)
51503ad2ant1 1080 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑃 ∈ Mnd)
52103ad2ant1 1080 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑁 ∈ Fin)
53 eqid 2621 . . . . . . . . . . . 12 (algSc‘𝑃) = (algSc‘𝑃)
54 eqid 2621 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
5547adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
5645ply1lmod 19541 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
578, 56syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ LMod)
5857adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ LMod)
5953, 54, 55, 58asclghm 19257 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
6045ply1sca 19542 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
6160adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
6261oveq1d 6619 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 GrpHom 𝑃) = ((Scalar‘𝑃) GrpHom 𝑃))
6359, 62eleqtrrd 2701 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 GrpHom 𝑃))
64 ghmmhm 17591 . . . . . . . . . 10 ((algSc‘𝑃) ∈ (𝑅 GrpHom 𝑃) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6563, 64syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6665adantr 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
67663ad2ant1 1080 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (algSc‘𝑃) ∈ (𝑅 MndHom 𝑃))
6893ad2ant1 1080 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑅 ∈ Ring)
6968adantr 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑅 ∈ Ring)
7034adantr 481 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑘𝑁)
71 simpr 477 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑚𝑁)
72153ad2ant1 1080 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑥 ∈ (Base‘𝐴))
7372adantr 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑥 ∈ (Base‘𝐴))
7473, 12sylibr 224 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑥𝐵)
751, 6, 11, 70, 71, 74matecld 20151 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑘𝑥𝑚) ∈ (Base‘𝑅))
7635adantr 481 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑙𝑁)
771fveq2i 6151 . . . . . . . . . . . . . . . 16 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
7811, 77eqtri 2643 . . . . . . . . . . . . . . 15 𝐵 = (Base‘(𝑁 Mat 𝑅))
7978eleq2i 2690 . . . . . . . . . . . . . 14 (𝑦𝐵𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8079biimpi 206 . . . . . . . . . . . . 13 (𝑦𝐵𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8180ad2antll 764 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
82813ad2ant1 1080 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8382adantr 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦 ∈ (Base‘(𝑁 Mat 𝑅)))
8483, 79sylibr 224 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦𝐵)
851, 6, 11, 71, 76, 84matecld 20151 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑦𝑙) ∈ (Base‘𝑅))
866, 7ringcl 18482 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑘𝑥𝑚) ∈ (Base‘𝑅) ∧ (𝑚𝑦𝑙) ∈ (Base‘𝑅)) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ (Base‘𝑅))
8769, 75, 85, 86syl3anc 1323 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ (Base‘𝑅))
88 eqid 2621 . . . . . . . 8 (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))
89 ovex 6632 . . . . . . . . 9 ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ V
9089a1i 11 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)) ∈ V)
91 fvex 6158 . . . . . . . . 9 (0g𝑅) ∈ V
9291a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (0g𝑅) ∈ V)
9388, 52, 90, 92fsuppmptdm 8230 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) finSupp (0g𝑅))
946, 40, 44, 51, 52, 67, 87, 93gsummptmhm 18261 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑃 Σg (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))) = ((algSc‘𝑃)‘(𝑅 Σg (𝑚𝑁 ↦ ((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))))
9545ply1assa 19488 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
9695adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg)
9753, 54asclrhm 19261 . . . . . . . . . . . . . 14 (𝑃 ∈ AssAlg → (algSc‘𝑃) ∈ ((Scalar‘𝑃) RingHom 𝑃))
9896, 97syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) RingHom 𝑃))
9961oveq1d 6619 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 RingHom 𝑃) = ((Scalar‘𝑃) RingHom 𝑃))
10098, 99eleqtrrd 2701 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
101100adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
1021013ad2ant1 1080 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
103102adantr 481 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (algSc‘𝑃) ∈ (𝑅 RingHom 𝑃))
104213ad2ant1 1080 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → 𝑦 ∈ (Base‘𝐴))
105104adantr 481 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦 ∈ (Base‘𝐴))
106105, 19sylibr 224 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → 𝑦𝐵)
1071, 6, 11, 71, 76, 106matecld 20151 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → (𝑚𝑦𝑙) ∈ (Base‘𝑅))
108 eqid 2621 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
1096, 7, 108rhmmul 18648 . . . . . . . . 9 (((algSc‘𝑃) ∈ (𝑅 RingHom 𝑃) ∧ (𝑘𝑥𝑚) ∈ (Base‘𝑅) ∧ (𝑚𝑦𝑙) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))
110103, 75, 107, 109syl3anc 1323 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) ∧ 𝑚𝑁) → ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))) = (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))
111110mpteq2dva 4704 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙)))) = (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))
112111oveq2d 6620 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → (𝑃 Σg (𝑚𝑁 ↦ ((algSc‘𝑃)‘((𝑘𝑥𝑚)(.r𝑅)(𝑚𝑦𝑙))))) = (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))))
11339, 94, 1123eqtr2d 2661 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙)) = (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙))))))
114113mpt2eq3dva 6672 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))))
115 mat2pmatbas.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
116 eqid 2621 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
117 eqid 2621 . . . . 5 (.r𝐶) = (.r𝐶)
11847ad2antlr 762 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
119 eqid 2621 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
120 eqid 2621 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
12193ad2ant1 1080 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
122 simp2 1060 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
123 simp3 1061 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
124 simp1rl 1124 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑥𝐵)
1251, 6, 11, 122, 123, 124matecld 20151 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
12645, 53, 6, 116ply1sclcl 19575 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑥𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
127121, 125, 126syl2anc 692 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
128 simp1rr 1125 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑦𝐵)
1291, 6, 11, 122, 123, 128matecld 20151 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
13045, 53, 6, 116ply1sclcl 19575 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
131121, 129, 130syl2anc 692 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
132 oveq12 6613 . . . . . . 7 ((𝑘 = 𝑖𝑚 = 𝑗) → (𝑘𝑥𝑚) = (𝑖𝑥𝑗))
133132fveq2d 6152 . . . . . 6 ((𝑘 = 𝑖𝑚 = 𝑗) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
134133adantl 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑘 = 𝑖𝑚 = 𝑗)) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
135 oveq12 6613 . . . . . . 7 ((𝑚 = 𝑖𝑙 = 𝑗) → (𝑚𝑦𝑙) = (𝑖𝑦𝑗))
136135fveq2d 6152 . . . . . 6 ((𝑚 = 𝑖𝑙 = 𝑗) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
137136adantl 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑚 = 𝑖𝑙 = 𝑗)) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
138 fvex 6158 . . . . . 6 ((algSc‘𝑃)‘(𝑘𝑥𝑚)) ∈ V
139138a1i 11 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑘𝑁𝑚𝑁) → ((algSc‘𝑃)‘(𝑘𝑥𝑚)) ∈ V)
140 fvex 6158 . . . . . 6 ((algSc‘𝑃)‘(𝑚𝑦𝑙)) ∈ V
141140a1i 11 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑚𝑁𝑙𝑁) → ((algSc‘𝑃)‘(𝑚𝑦𝑙)) ∈ V)
142115, 116, 117, 108, 118, 10, 119, 120, 127, 131, 134, 137, 139, 141mpt2matmul 20171 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑃 Σg (𝑚𝑁 ↦ (((algSc‘𝑃)‘(𝑘𝑥𝑚))(.r𝑃)((algSc‘𝑃)‘(𝑚𝑦𝑙)))))))
143114, 142eqtr4d 2658 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
1441matring 20168 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1458, 144sylan2 491 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
146145anim1i 591 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
147 3anass 1040 . . . . . 6 ((𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐴 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)))
148146, 147sylibr 224 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵))
149 eqid 2621 . . . . . 6 (.r𝐴) = (.r𝐴)
15011, 149ringcl 18482 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐴)𝑦) ∈ 𝐵)
151148, 150syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐴)𝑦) ∈ 𝐵)
152 mat2pmatbas.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
153152, 1, 11, 45, 53mat2pmatval 20448 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r𝐴)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(.r𝐴)𝑦)) = (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))))
15410, 9, 151, 153syl3anc 1323 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐴)𝑦)) = (𝑘𝑁, 𝑙𝑁 ↦ ((algSc‘𝑃)‘(𝑘(𝑥(.r𝐴)𝑦)𝑙))))
155 simpl 473 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
156155anim2i 592 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐵))
157 df-3an 1038 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑥𝐵))
158156, 157sylibr 224 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵))
159152, 1, 11, 45, 53mat2pmatval 20448 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
160158, 159syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
161 simpr 477 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
162161anim2i 592 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐵))
163 df-3an 1038 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑦𝐵))
164162, 163sylibr 224 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵))
165152, 1, 11, 45, 53mat2pmatval 20448 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
166164, 165syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
167160, 166oveq12d 6622 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(.r𝐶)(𝑇𝑦)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(.r𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
168143, 154, 1673eqtr4d 2665 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
169168ralrimivva 2965 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cotp 4156  cmpt 4673   × cxp 5072  cfv 5847  (class class class)co 6604  cmpt2 6606  𝑚 cmap 7802  Fincfn 7899  Basecbs 15781  .rcmulr 15863  Scalarcsca 15865  0gc0g 16021   Σg cgsu 16022  Mndcmnd 17215   MndHom cmhm 17254   GrpHom cghm 17578  CMndccmn 18114  Ringcrg 18468  CRingccrg 18469   RingHom crh 18633  LModclmod 18784  AssAlgcasa 19228  algSccascl 19230  Poly1cpl1 19466   maMul cmmul 20108   Mat cmat 20132   matToPolyMat cmat2pmat 20428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-0g 16023  df-gsum 16024  df-prds 16029  df-pws 16031  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-rnghom 18636  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-assa 19231  df-ascl 19233  df-psr 19275  df-mpl 19277  df-opsr 19279  df-psr1 19469  df-ply1 19471  df-dsmm 19995  df-frlm 20010  df-mamu 20109  df-mat 20133  df-mat2pmat 20431
This theorem is referenced by:  mat2pmatmhm  20457
  Copyright terms: Public domain W3C validator