HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-iii Structured version   Visualization version   GIF version

Theorem norm-iii 27981
Description: Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
norm-iii ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵)))

Proof of Theorem norm-iii
StepHypRef Expression
1 oveq1 6654 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 · 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵))
21fveq2d 6193 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (norm‘(𝐴 · 𝐵)) = (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)))
3 fveq2 6189 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (abs‘𝐴) = (abs‘if(𝐴 ∈ ℂ, 𝐴, 0)))
43oveq1d 6662 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((abs‘𝐴) · (norm𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm𝐵)))
52, 4eqeq12d 2636 . 2 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵)) ↔ (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm𝐵))))
6 oveq2 6655 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))
76fveq2d 6193 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)) = (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))))
8 fveq2 6189 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm𝐵) = (norm‘if(𝐵 ∈ ℋ, 𝐵, 0)))
98oveq2d 6663 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm‘if(𝐵 ∈ ℋ, 𝐵, 0))))
107, 9eqeq12d 2636 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm𝐵)) ↔ (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm‘if(𝐵 ∈ ℋ, 𝐵, 0)))))
11 0cn 10029 . . . 4 0 ∈ ℂ
1211elimel 4148 . . 3 if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ
13 ifhvhv0 27863 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
1412, 13norm-iii-i 27980 . 2 (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm‘if(𝐵 ∈ ℋ, 𝐵, 0)))
155, 10, 14dedth2h 4138 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  ifcif 4084  cfv 5886  (class class class)co 6647  cc 9931  0cc0 9933   · cmul 9938  abscabs 13968  chil 27760   · csm 27762  normcno 27764  0c0v 27765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011  ax-hv0cl 27844  ax-hfvmul 27846  ax-hvmul0 27851  ax-hfi 27920  ax-his1 27923  ax-his3 27925  ax-his4 27926
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-sup 8345  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-n0 11290  df-z 11375  df-uz 11685  df-rp 11830  df-seq 12797  df-exp 12856  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-hnorm 27809
This theorem is referenced by:  hhnv  28006  norm1  28090  hhssnv  28105  nmbdoplbi  28867  nmcexi  28869  nmcopexi  28870  nmcoplbi  28871  nmophmi  28874  nmopcoi  28938  strlem1  29093
  Copyright terms: Public domain W3C validator