HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  omlsi Structured version   Visualization version   GIF version

Theorem omlsi 28493
Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of [Kalmbach] p. 22. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
omls.1 𝐴C
omls.2 𝐵S
Assertion
Ref Expression
omlsi ((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0) → 𝐴 = 𝐵)

Proof of Theorem omlsi
StepHypRef Expression
1 eqeq1 2728 . 2 (𝐴 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → (𝐴 = 𝐵 ↔ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) = 𝐵))
2 eqeq2 2735 . 2 (𝐵 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) → (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) = 𝐵 ↔ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0)))
3 omls.1 . . . 4 𝐴C
4 h0elch 28342 . . . 4 0C
53, 4keepel 4263 . . 3 if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ∈ C
6 omls.2 . . . 4 𝐵S
7 h0elsh 28343 . . . 4 0S
86, 7keepel 4263 . . 3 if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∈ S
9 sseq1 3732 . . . . . 6 (𝐴 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → (𝐴𝐵 ↔ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ 𝐵))
10 fveq2 6304 . . . . . . . 8 (𝐴 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → (⊥‘𝐴) = (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0)))
1110ineq2d 3922 . . . . . . 7 (𝐴 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → (𝐵 ∩ (⊥‘𝐴)) = (𝐵 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))))
1211eqeq1d 2726 . . . . . 6 (𝐴 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → ((𝐵 ∩ (⊥‘𝐴)) = 0 ↔ (𝐵 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0))
139, 12anbi12d 749 . . . . 5 (𝐴 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → ((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0) ↔ (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0)))
14 sseq2 3733 . . . . . 6 (𝐵 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) → (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ 𝐵 ↔ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0)))
15 ineq1 3915 . . . . . . 7 (𝐵 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) → (𝐵 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))))
1615eqeq1d 2726 . . . . . 6 (𝐵 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) → ((𝐵 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0 ↔ (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0))
1714, 16anbi12d 749 . . . . 5 (𝐵 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) → ((if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ 𝐵 ∧ (𝐵 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0) ↔ (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∧ (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0)))
18 sseq1 3732 . . . . . 6 (0 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → (0 ⊆ 0 ↔ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ 0))
19 fveq2 6304 . . . . . . . 8 (0 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → (⊥‘0) = (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0)))
2019ineq2d 3922 . . . . . . 7 (0 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → (0 ∩ (⊥‘0)) = (0 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))))
2120eqeq1d 2726 . . . . . 6 (0 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → ((0 ∩ (⊥‘0)) = 0 ↔ (0 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0))
2218, 21anbi12d 749 . . . . 5 (0 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) → ((0 ⊆ 0 ∧ (0 ∩ (⊥‘0)) = 0) ↔ (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ 0 ∧ (0 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0)))
23 sseq2 3733 . . . . . 6 (0 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) → (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ 0 ↔ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0)))
24 ineq1 3915 . . . . . . 7 (0 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) → (0 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))))
2524eqeq1d 2726 . . . . . 6 (0 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) → ((0 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0 ↔ (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0))
2623, 25anbi12d 749 . . . . 5 (0 = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) → ((if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ 0 ∧ (0 ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0) ↔ (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∧ (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0)))
27 ssid 3730 . . . . . 6 0 ⊆ 0
28 ocin 28385 . . . . . . 7 (0S → (0 ∩ (⊥‘0)) = 0)
297, 28ax-mp 5 . . . . . 6 (0 ∩ (⊥‘0)) = 0
3027, 29pm3.2i 470 . . . . 5 (0 ⊆ 0 ∧ (0 ∩ (⊥‘0)) = 0)
3113, 17, 22, 26, 30elimhyp2v 4255 . . . 4 (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∧ (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0)
3231simpli 476 . . 3 if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) ⊆ if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0)
3331simpri 481 . . 3 (if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0) ∩ (⊥‘if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0))) = 0
345, 8, 32, 33omlsii 28492 . 2 if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐴, 0) = if((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0), 𝐵, 0)
351, 2, 34dedth2v 4251 1 ((𝐴𝐵 ∧ (𝐵 ∩ (⊥‘𝐴)) = 0) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  cin 3679  wss 3680  ifcif 4194  cfv 6001   S csh 28015   C cch 28016  cort 28017  0c0h 28022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cc 9370  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128  ax-mulf 10129  ax-hilex 28086  ax-hfvadd 28087  ax-hvcom 28088  ax-hvass 28089  ax-hv0cl 28090  ax-hvaddid 28091  ax-hfvmul 28092  ax-hvmulid 28093  ax-hvmulass 28094  ax-hvdistr1 28095  ax-hvdistr2 28096  ax-hvmul0 28097  ax-hfi 28166  ax-his1 28169  ax-his2 28170  ax-his3 28171  ax-his4 28172  ax-hcompl 28289
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-omul 7685  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-acn 8881  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ico 12295  df-icc 12296  df-fz 12441  df-fl 12708  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-rlim 14340  df-rest 16206  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-fbas 19866  df-fg 19867  df-top 20822  df-topon 20839  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948  df-nei 21025  df-lm 21156  df-haus 21242  df-fil 21772  df-fm 21864  df-flim 21865  df-flf 21866  df-cfil 23174  df-cau 23175  df-cmet 23176  df-grpo 27577  df-gid 27578  df-ginv 27579  df-gdiv 27580  df-ablo 27629  df-vc 27644  df-nv 27677  df-va 27680  df-ba 27681  df-sm 27682  df-0v 27683  df-vs 27684  df-nmcv 27685  df-ims 27686  df-ssp 27807  df-ph 27898  df-cbn 27949  df-hnorm 28055  df-hba 28056  df-hvsub 28058  df-hlim 28059  df-hcau 28060  df-sh 28294  df-ch 28308  df-oc 28339  df-ch0 28340
This theorem is referenced by:  pjomli  28524
  Copyright terms: Public domain W3C validator