MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem Structured version   Visualization version   GIF version

Theorem opphllem 26521
Description: Lemma 8.24 of [Schwabhauser] p. 66. This is used later for mideulem 26522 and later for opphl 26540. (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideulem.1 (𝜑𝐴𝐵)
mideulem.2 (𝜑𝑄𝑃)
mideulem.3 (𝜑𝑂𝑃)
mideulem.4 (𝜑𝑇𝑃)
mideulem.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
mideulem.6 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
mideulem.7 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
mideulem.8 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
opphllem.1 (𝜑𝑅𝑃)
opphllem.2 (𝜑𝑅 ∈ (𝐵𝐼𝑄))
opphllem.3 (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))
Assertion
Ref Expression
opphllem (𝜑 → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑂   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥)   𝐿(𝑥)

Proof of Theorem opphllem
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
2 colperpex.d . . . 4 = (dist‘𝐺)
3 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
4 colperpex.l . . . 4 𝐿 = (LineG‘𝐺)
5 mideu.s . . . 4 𝑆 = (pInvG‘𝐺)
6 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐺 ∈ TarskiG)
8 eqid 2821 . . . 4 (𝑆𝑥) = (𝑆𝑥)
9 mideu.2 . . . . 5 (𝜑𝐵𝑃)
109adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵𝑃)
11 mideulem.3 . . . . 5 (𝜑𝑂𝑃)
1211adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂𝑃)
13 mideu.1 . . . . 5 (𝜑𝐴𝑃)
1413adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐴𝑃)
15 opphllem.1 . . . . 5 (𝜑𝑅𝑃)
1615adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑅𝑃)
17 simprl 769 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥𝑃)
18 mideulem.1 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
1918necomd 3071 . . . . . . . . . . . . 13 (𝜑𝐵𝐴)
2019neneqd 3021 . . . . . . . . . . . 12 (𝜑 → ¬ 𝐵 = 𝐴)
2120adantr 483 . . . . . . . . . . 11 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝐵 = 𝐴)
22 mideulem.6 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
234, 6, 22perpln2 26497 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿𝑂) ∈ ran 𝐿)
241, 3, 4, 6, 13, 11, 23tglnne 26414 . . . . . . . . . . . . . 14 (𝜑𝐴𝑂)
2524necomd 3071 . . . . . . . . . . . . 13 (𝜑𝑂𝐴)
2625neneqd 3021 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑂 = 𝐴)
2726adantr 483 . . . . . . . . . . 11 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝑂 = 𝐴)
2821, 27jca 514 . . . . . . . . . 10 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
296adantr 483 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐺 ∈ TarskiG)
309adantr 483 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐵𝑃)
3113adantr 483 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐴𝑃)
3211adantr 483 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂𝑃)
331, 3, 4, 6, 9, 13, 19tglinerflx2 26420 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ (𝐵𝐿𝐴))
341, 3, 4, 6, 13, 9, 18tglinecom 26421 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
3534, 22eqbrtrrd 5090 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝑂))
361, 2, 3, 4, 6, 9, 13, 33, 11, 35perprag 26512 . . . . . . . . . . . . 13 (𝜑 → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
3736adantr 483 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
38 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂 ∈ (𝐵𝐿𝐴))
3938orcd 869 . . . . . . . . . . . 12 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (𝑂 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
401, 2, 3, 4, 5, 29, 30, 31, 32, 37, 39ragflat3 26492 . . . . . . . . . . 11 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (𝐵 = 𝐴𝑂 = 𝐴))
41 oran 986 . . . . . . . . . . 11 ((𝐵 = 𝐴𝑂 = 𝐴) ↔ ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
4240, 41sylib 220 . . . . . . . . . 10 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
4328, 42pm2.65da 815 . . . . . . . . 9 (𝜑 → ¬ 𝑂 ∈ (𝐵𝐿𝐴))
4443adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐵𝐿𝐴))
4534adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
4644, 45neleqtrrd 2935 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
4718adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐴𝐵)
4847neneqd 3021 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝐴 = 𝐵)
4946, 48jca 514 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (¬ 𝑂 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
50 pm4.56 985 . . . . . 6 ((¬ 𝑂 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵) ↔ ¬ (𝑂 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5149, 50sylib 220 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ (𝑂 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
521, 4, 3, 7, 14, 10, 12, 51ncolrot2 26349 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ (𝐵 ∈ (𝑂𝐿𝐴) ∨ 𝑂 = 𝐴))
53 simprrr 780 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑅𝐼𝑂))
541, 2, 3, 7, 16, 17, 12, 53tgbtwncom 26274 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑂𝐼𝑅))
55 mideulem.4 . . . . . . . 8 (𝜑𝑇𝑃)
5655adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑇𝑃)
57 mideulem.7 . . . . . . . 8 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
5857adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑇 ∈ (𝐴𝐿𝐵))
59 simprrl 779 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝑇𝐼𝐵))
601, 3, 4, 7, 56, 14, 10, 17, 58, 59coltr3 26434 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐴𝐿𝐵))
6143, 34neleqtrrd 2935 . . . . . . 7 (𝜑 → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
6261adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
63 nelne2 3115 . . . . . 6 ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑂 ∈ (𝐴𝐿𝐵)) → 𝑥𝑂)
6460, 62, 63syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥𝑂)
651, 2, 3, 7, 12, 17, 16, 54, 64tgbtwnne 26276 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂𝑅)
661, 2, 3, 4, 5, 6, 9, 13, 11israg 26483 . . . . . . . 8 (𝜑 → (⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝑂) = (𝐵 ((𝑆𝐴)‘𝑂))))
6736, 66mpbid 234 . . . . . . 7 (𝜑 → (𝐵 𝑂) = (𝐵 ((𝑆𝐴)‘𝑂)))
6867ad3antrrr 728 . . . . . 6 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 𝑂) = (𝐵 ((𝑆𝐴)‘𝑂)))
696ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐺 ∈ TarskiG)
70 eqid 2821 . . . . . . . . 9 (𝑆𝐴) = (𝑆𝐴)
711, 2, 3, 4, 5, 7, 14, 70, 12mircl 26447 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ((𝑆𝐴)‘𝑂) ∈ 𝑃)
7271ad2antrr 724 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ((𝑆𝐴)‘𝑂) ∈ 𝑃)
7313ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐴𝑃)
7411ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑂𝑃)
7515ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑅𝑃)
769ad3antrrr 728 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵𝑃)
77 simplr 767 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑠𝑃)
781, 2, 3, 4, 5, 69, 73, 70, 74mirbtwn 26444 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐴 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑂))
79 eqid 2821 . . . . . . . . 9 (𝑆𝐵) = (𝑆𝐵)
801, 2, 3, 4, 5, 69, 76, 79, 77mirbtwn 26444 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵 ∈ (((𝑆𝐵)‘𝑠)𝐼𝑠))
81 simpr 487 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅 = ((𝑆𝑚)‘𝑠))
8269ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐺 ∈ TarskiG)
8373ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐴𝑃)
8476ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐵𝑃)
8547ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐴𝐵)
86 mideulem.2 . . . . . . . . . . . . . . . 16 (𝜑𝑄𝑃)
8786ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑄𝑃)
8874ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑂𝑃)
8956ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑇𝑃)
90 mideulem.5 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
9190ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
9222ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
9358ad4antr 730 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑇 ∈ (𝐴𝐿𝐵))
94 mideulem.8 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
9594ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑇 ∈ (𝑄𝐼𝑂))
9675ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅𝑃)
97 opphllem.2 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ (𝐵𝐼𝑄))
9897ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅 ∈ (𝐵𝐼𝑄))
99 opphllem.3 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))
10099ad5antr 732 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝐴 𝑂) = (𝐵 𝑅))
10117ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥𝑃)
102101ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥𝑃)
103 simp-5r 784 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂))))
104103simprd 498 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))
105104simpld 497 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥 ∈ (𝑇𝐼𝐵))
106104simprd 498 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥 ∈ (𝑅𝐼𝑂))
10777ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑠𝑃)
108 simpllr 774 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅)))
109108simpld 497 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠))
110 simprr 771 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 𝑠) = (𝑥 𝑅))
111110ad2antrr 724 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑥 𝑠) = (𝑥 𝑅))
112 simplr 767 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑚𝑃)
1131, 2, 3, 4, 82, 5, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96, 98, 100, 102, 105, 106, 107, 109, 111, 112, 81mideulem2 26520 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝐵 = 𝑚)
114113eqcomd 2827 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑚 = 𝐵)
115114fveq2d 6674 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → (𝑆𝑚) = (𝑆𝐵))
116115fveq1d 6672 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → ((𝑆𝑚)‘𝑠) = ((𝑆𝐵)‘𝑠))
11781, 116eqtrd 2856 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) ∧ 𝑚𝑃) ∧ 𝑅 = ((𝑆𝑚)‘𝑠)) → 𝑅 = ((𝑆𝐵)‘𝑠))
118 eqid 2821 . . . . . . . . . . 11 (𝑆𝑚) = (𝑆𝑚)
1191, 2, 3, 4, 5, 69, 118, 77, 75, 101, 110midexlem 26478 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ∃𝑚𝑃 𝑅 = ((𝑆𝑚)‘𝑠))
120117, 119r19.29a 3289 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑅 = ((𝑆𝐵)‘𝑠))
121120oveq1d 7171 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑅𝐼𝑠) = (((𝑆𝐵)‘𝑠)𝐼𝑠))
12280, 121eleqtrrd 2916 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵 ∈ (𝑅𝐼𝑠))
1231, 2, 3, 4, 5, 69, 73, 70, 74mircgr 26443 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 ((𝑆𝐴)‘𝑂)) = (𝐴 𝑂))
12499ad3antrrr 728 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 𝑂) = (𝐵 𝑅))
125123, 124eqtrd 2856 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 ((𝑆𝐴)‘𝑂)) = (𝐵 𝑅))
1261, 2, 3, 69, 73, 72, 76, 75, 125tgcgrcomlr 26266 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (((𝑆𝐴)‘𝑂) 𝐴) = (𝑅 𝐵))
127120oveq2d 7172 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 𝑅) = (𝐵 ((𝑆𝐵)‘𝑠)))
1281, 2, 3, 4, 5, 69, 76, 79, 77mircgr 26443 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 ((𝑆𝐵)‘𝑠)) = (𝐵 𝑠))
129124, 127, 1283eqtrd 2860 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 𝑂) = (𝐵 𝑠))
1301, 2, 3, 69, 72, 73, 74, 75, 76, 77, 78, 122, 126, 129tgcgrextend 26271 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (((𝑆𝐴)‘𝑂) 𝑂) = (𝑅 𝑠))
1311, 2, 3, 69, 72, 75axtgcgrrflx 26248 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (((𝑆𝐴)‘𝑂) 𝑅) = (𝑅 ((𝑆𝐴)‘𝑂)))
1321, 2, 3, 69, 74, 75axtgcgrrflx 26248 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑂 𝑅) = (𝑅 𝑂))
13353ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (𝑅𝐼𝑂))
134 simprl 769 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠))
1351, 2, 3, 69, 72, 101, 77, 134tgbtwncom 26274 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (𝑠𝐼((𝑆𝐴)‘𝑂)))
1361, 2, 3, 69, 101, 77, 101, 75, 110tgcgrcomlr 26266 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑠 𝑥) = (𝑅 𝑥))
137136eqcomd 2827 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑅 𝑥) = (𝑠 𝑥))
13836ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
13947necomd 3071 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵𝐴)
140139ad2antrr 724 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝐵𝐴)
14160ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → 𝑥 ∈ (𝐴𝐿𝐵))
142141orcd 869 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
1431, 4, 3, 69, 73, 76, 101, 142colcom 26344 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1441, 4, 3, 69, 76, 73, 101, 143colrot1 26345 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
1451, 2, 3, 4, 5, 69, 76, 73, 74, 101, 138, 140, 144ragcol 26485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → ⟨“𝑥𝐴𝑂”⟩ ∈ (∟G‘𝐺))
1461, 2, 3, 4, 5, 69, 101, 73, 74israg 26483 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (⟨“𝑥𝐴𝑂”⟩ ∈ (∟G‘𝐺) ↔ (𝑥 𝑂) = (𝑥 ((𝑆𝐴)‘𝑂))))
147145, 146mpbid 234 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑥 𝑂) = (𝑥 ((𝑆𝐴)‘𝑂)))
1481, 2, 3, 69, 75, 101, 74, 77, 101, 72, 133, 135, 137, 147tgcgrextend 26271 . . . . . . . 8 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑅 𝑂) = (𝑠 ((𝑆𝐴)‘𝑂)))
149132, 148eqtrd 2856 . . . . . . 7 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝑂 𝑅) = (𝑠 ((𝑆𝐴)‘𝑂)))
1501, 2, 3, 69, 72, 73, 74, 75, 75, 76, 77, 72, 78, 122, 130, 129, 131, 149tgifscgr 26294 . . . . . 6 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐴 𝑅) = (𝐵 ((𝑆𝐴)‘𝑂)))
15168, 150eqtr4d 2859 . . . . 5 ((((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) ∧ 𝑠𝑃) ∧ (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅))) → (𝐵 𝑂) = (𝐴 𝑅))
1521, 2, 3, 7, 71, 17, 17, 16axtgsegcon 26250 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → ∃𝑠𝑃 (𝑥 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑠) ∧ (𝑥 𝑠) = (𝑥 𝑅)))
153151, 152r19.29a 3289 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵 𝑂) = (𝐴 𝑅))
15499adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴 𝑂) = (𝐵 𝑅))
1551, 2, 3, 7, 14, 12, 10, 16, 154tgcgrcomlr 26266 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑂 𝐴) = (𝑅 𝐵))
156143, 152r19.29a 3289 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1571, 4, 3, 7, 12, 16, 17, 54btwncolg1 26341 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ∈ (𝑂𝐿𝑅) ∨ 𝑂 = 𝑅))
1581, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 17, 52, 65, 153, 155, 156, 157symquadlem 26475 . . 3 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝐵 = ((𝑆𝑥)‘𝐴))
1591, 2, 3, 4, 5, 7, 17, 8, 14mirbtwn 26444 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (((𝑆𝑥)‘𝐴)𝐼𝐴))
160158oveq1d 7171 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵𝐼𝐴) = (((𝑆𝑥)‘𝐴)𝐼𝐴))
161159, 160eleqtrrd 2916 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐵𝐼𝐴))
1621, 2, 3, 7, 10, 17, 14, 161tgbtwncom 26274 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑥 ∈ (𝐴𝐼𝐵))
1631, 2, 3, 7, 14, 10axtgcgrrflx 26248 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐴 𝐵) = (𝐵 𝐴))
164158oveq2d 7172 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 𝐵) = (𝑥 ((𝑆𝑥)‘𝐴)))
1651, 2, 3, 4, 5, 7, 17, 8, 14mircgr 26443 . . . . . 6 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 ((𝑆𝑥)‘𝐴)) = (𝑥 𝐴))
166164, 165eqtrd 2856 . . . . 5 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 𝐵) = (𝑥 𝐴))
1671, 2, 3, 7, 14, 17, 10, 12, 10, 17, 14, 16, 162, 161, 163, 166, 154, 153tgifscgr 26294 . . . 4 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝑥 𝑂) = (𝑥 𝑅))
1681, 2, 3, 4, 5, 7, 17, 8, 16, 12, 167, 54ismir 26445 . . 3 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → 𝑂 = ((𝑆𝑥)‘𝑅))
169158, 168jca 514 . 2 ((𝜑 ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))) → (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
1701, 2, 3, 6, 86, 55, 11, 94tgbtwncom 26274 . . 3 (𝜑𝑇 ∈ (𝑂𝐼𝑄))
1711, 2, 3, 6, 11, 9, 86, 55, 15, 170, 97axtgpasch 26253 . 2 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝑇𝐼𝐵) ∧ 𝑥 ∈ (𝑅𝐼𝑂)))
172169, 171reximddv 3275 1 (𝜑 → ∃𝑥𝑃 (𝐵 = ((𝑆𝑥)‘𝐴) ∧ 𝑂 = ((𝑆𝑥)‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  ⟨“cs3 14204  Basecbs 16483  distcds 16574  TarskiGcstrkg 26216  Itvcitv 26222  LineGclng 26223  pInvGcmir 26438  ∟Gcrag 26479  ⟂Gcperpg 26481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-trkgc 26234  df-trkgb 26235  df-trkgcb 26236  df-trkg 26239  df-cgrg 26297  df-leg 26369  df-mir 26439  df-rag 26480  df-perpg 26482
This theorem is referenced by:  mideulem  26522  opphllem3  26535
  Copyright terms: Public domain W3C validator