Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval4lem2 Structured version   Visualization version   GIF version

Theorem ovolval4lem2 39334
Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 39331, but here 𝑓 is may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval4lem2.a (𝜑𝐴 ⊆ ℝ)
ovolval4lem2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
ovolval4lem2.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
Assertion
Ref Expression
ovolval4lem2 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝑛,𝐺   𝑓,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐴(𝑛)   𝐺(𝑦,𝑓)   𝑀(𝑦,𝑓,𝑛)

Proof of Theorem ovolval4lem2
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval4lem2.a . 2 (𝜑𝐴 ⊆ ℝ)
2 ovolval4lem2.m . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
3 iftrue 4042 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (2nd ‘(𝑓𝑛)))
43opeq2d 4342 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
54adantl 481 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
6 df-br 4579 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
76biimpi 205 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
87adantl 481 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
95, 8eqeltrd 2688 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
10 iffalse 4045 . . . . . . . . . . . . . . . 16 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (1st ‘(𝑓𝑛)))
1110opeq2d 4342 . . . . . . . . . . . . . . 15 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
1211adantl 481 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
13 elmapi 7743 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1413ffvelrnda 6252 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ × ℝ))
15 xp1st 7067 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1716leidd 10446 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)))
18 df-br 4579 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
1917, 18sylib 207 . . . . . . . . . . . . . . 15 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2019adantr 480 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2112, 20eqeltrd 2688 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
229, 21pm2.61dan 828 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
23 xp2nd 7068 . . . . . . . . . . . . . . 15 ((𝑓𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2414, 23syl 17 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2524, 16ifcld 4081 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ)
26 opelxpi 5062 . . . . . . . . . . . . 13 (((1st ‘(𝑓𝑛)) ∈ ℝ ∧ if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2716, 25, 26syl2anc 691 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2822, 27elind 3760 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
29 ovolval4lem2.g . . . . . . . . . . 11 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
3028, 29fmptd 6277 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
31 reex 9884 . . . . . . . . . . . . . 14 ℝ ∈ V
3231, 31xpex 6838 . . . . . . . . . . . . 13 (ℝ × ℝ) ∈ V
3332inex2 4723 . . . . . . . . . . . 12 ( ≤ ∩ (ℝ × ℝ)) ∈ V
3433a1i 11 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ( ≤ ∩ (ℝ × ℝ)) ∈ V)
35 nnex 10876 . . . . . . . . . . . 12 ℕ ∈ V
3635a1i 11 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ℕ ∈ V)
3734, 36elmapd 7736 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → (𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
3830, 37mpbird 246 . . . . . . . . 9 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
3938adantr 480 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
40 simpr 476 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝑓))
41 rexpssxrxp 9941 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4241a1i 11 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
4313, 42fssd 5956 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
44 fveq2 6088 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑓𝑘) = (𝑓𝑛))
4544fveq2d 6092 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (1st ‘(𝑓𝑘)) = (1st ‘(𝑓𝑛)))
4644fveq2d 6092 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (2nd ‘(𝑓𝑘)) = (2nd ‘(𝑓𝑛)))
4745, 46breq12d 4591 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘)) ↔ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
4847cbvrabv 3172 . . . . . . . . . . . . . 14 {𝑘 ∈ ℕ ∣ (1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘))} = {𝑛 ∈ ℕ ∣ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))}
4943, 29, 48ovolval4lem1 39333 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ( ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺))))
5049simpld 474 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5150adantr 480 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5240, 51sseqtrd 3604 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝐺))
5352adantrr 749 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐴 ran ((,) ∘ 𝐺))
54 simpr 476 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
5549simprd 478 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺)))
56 coass 5557 . . . . . . . . . . . . . . 15 ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓))
5756a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓)))
58 coass 5557 . . . . . . . . . . . . . . 15 ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺))
5958a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺)))
6055, 57, 593eqtr4d 2654 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝐺))
6160fveq2d 6092 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6261adantr 480 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6354, 62eqtrd 2644 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6463adantrl 748 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6553, 64jca 553 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
66 coeq2 5190 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → ((,) ∘ 𝑔) = ((,) ∘ 𝐺))
6766rneqd 5261 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6867unieqd 4377 . . . . . . . . . . 11 (𝑔 = 𝐺 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6968sseq2d 3596 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝐺)))
70 coeq2 5190 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝐺))
7170fveq2d 6092 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
7271eqeq2d 2620 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
7369, 72anbi12d 743 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))))
7473rspcev 3282 . . . . . . . 8 ((𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7539, 65, 74syl2anc 691 . . . . . . 7 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7675rexlimiva 3010 . . . . . 6 (∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
77 inss2 3796 . . . . . . . . . . 11 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
78 mapss 7764 . . . . . . . . . . 11 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ⊆ ((ℝ × ℝ) ↑𝑚 ℕ))
7932, 77, 78mp2an 704 . . . . . . . . . 10 (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ⊆ ((ℝ × ℝ) ↑𝑚 ℕ)
8079sseli 3564 . . . . . . . . 9 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 𝑔 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
8180adantr 480 . . . . . . . 8 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → 𝑔 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
82 simpr 476 . . . . . . . 8 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
83 coeq2 5190 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((,) ∘ 𝑓) = ((,) ∘ 𝑔))
8483rneqd 5261 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8584unieqd 4377 . . . . . . . . . . 11 (𝑓 = 𝑔 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8685sseq2d 3596 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝑔)))
87 coeq2 5190 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝑔))
8887fveq2d 6092 . . . . . . . . . . 11 (𝑓 = 𝑔 → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))
8988eqeq2d 2620 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
9086, 89anbi12d 743 . . . . . . . . 9 (𝑓 = 𝑔 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
9190rspcev 3282 . . . . . . . 8 ((𝑔 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9281, 82, 91syl2anc 691 . . . . . . 7 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9392rexlimiva 3010 . . . . . 6 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9476, 93impbii 198 . . . . 5 (∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
9594a1i 11 . . . 4 (𝑦 ∈ ℝ* → (∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
9695rabbiia 3161 . . 3 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
972, 96eqtri 2632 . 2 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
981, 97ovolval3 39331 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  ifcif 4036  cop 4131   cuni 4367   class class class wbr 4578  cmpt 4638   × cxp 5026  ran crn 5029  ccom 5032  wf 5786  cfv 5790  (class class class)co 6527  1st c1st 7035  2nd c2nd 7036  𝑚 cmap 7722  infcinf 8208  cr 9792  *cxr 9930   < clt 9931  cle 9932  cn 10870  (,)cioo 12005  vol*covol 22983  volcvol 22984  Σ^csumge0 39049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-rlim 14017  df-sum 14214  df-rest 15855  df-topgen 15876  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-top 20469  df-bases 20470  df-topon 20471  df-cmp 20948  df-ovol 22985  df-vol 22986  df-sumge0 39050
This theorem is referenced by:  ovolval4  39335
  Copyright terms: Public domain W3C validator