MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt3 Structured version   Visualization version   GIF version

Theorem pnt3 26190
Description: The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to 𝑥. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt3 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1

Proof of Theorem pnt3
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑓 𝑔 𝑘 𝑙 𝑟 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 26142 . 2 𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏
31pntibnd 26171 . . . 4 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)
4 simpll 765 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑏 ∈ ℝ+)
5 simplr 767 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏)
6 fveq2 6672 . . . . . . . . . . . 12 (𝑟 = 𝑥 → ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) = ((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥))
7 id 22 . . . . . . . . . . . 12 (𝑟 = 𝑥𝑟 = 𝑥)
86, 7oveq12d 7176 . . . . . . . . . . 11 (𝑟 = 𝑥 → (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟) = (((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥))
98fveq2d 6676 . . . . . . . . . 10 (𝑟 = 𝑥 → (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) = (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)))
109breq1d 5078 . . . . . . . . 9 (𝑟 = 𝑥 → ((abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏))
1110cbvralvw 3451 . . . . . . . 8 (∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 ↔ ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
125, 11sylib 220 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑥 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑥) / 𝑥)) ≤ 𝑏)
13 simprll 777 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑐 ∈ ℝ+)
14 simprlr 778 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → 𝑙 ∈ (0(,)1))
15 eqid 2823 . . . . . . 7 (𝑏 + 1) = (𝑏 + 1)
16 eqid 2823 . . . . . . 7 ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2))) = ((1 − (1 / (𝑏 + 1))) · ((𝑙 / (32 · 𝑐)) / ((𝑏 + 1)↑2)))
17 simprr 771 . . . . . . . 8 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
18 breq2 5072 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑦 < 𝑧𝑦 < 𝑔))
19 oveq2 7166 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔 → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (𝑙 · 𝑒)) · 𝑔))
2019breq1d 5078 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)))
2118, 20anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦))))
22 id 22 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑔𝑧 = 𝑔)
2322, 19oveq12d 7176 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑔 → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔)))
2423raleqdv 3417 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑔 → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
2521, 24anbi12d 632 . . . . . . . . . . . . . . 15 (𝑧 = 𝑔 → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
2625cbvrexvw 3452 . . . . . . . . . . . . . 14 (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
27 breq1 5071 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (𝑦 < 𝑔𝑓 < 𝑔))
28 oveq2 7166 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑓 → (𝑘 · 𝑦) = (𝑘 · 𝑓))
2928breq2d 5080 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑓 → (((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦) ↔ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)))
3027, 29anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑓 → ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ↔ (𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓))))
3130anbi1d 631 . . . . . . . . . . . . . . 15 (𝑦 = 𝑓 → (((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3231rexbidv 3299 . . . . . . . . . . . . . 14 (𝑦 = 𝑓 → (∃𝑔 ∈ ℝ+ ((𝑦 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3326, 32syl5bb 285 . . . . . . . . . . . . 13 (𝑦 = 𝑓 → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3433cbvralvw 3451 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
35 oveq1 7165 . . . . . . . . . . . . 13 (𝑟 = 𝑥 → (𝑟(,)+∞) = (𝑥(,)+∞))
3635raleqdv 3417 . . . . . . . . . . . 12 (𝑟 = 𝑥 → (∀𝑓 ∈ (𝑟(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3734, 36syl5bb 285 . . . . . . . . . . 11 (𝑟 = 𝑥 → (∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3837ralbidv 3199 . . . . . . . . . 10 (𝑟 = 𝑥 → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒)))
3938cbvrexvw 3452 . . . . . . . . 9 (∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4039ralbii 3167 . . . . . . . 8 (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
4117, 40sylib 220 . . . . . . 7 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑓 ∈ (𝑥(,)+∞)∃𝑔 ∈ ℝ+ ((𝑓 < 𝑔 ∧ ((1 + (𝑙 · 𝑒)) · 𝑔) < (𝑘 · 𝑓)) ∧ ∀𝑢 ∈ (𝑔[,]((1 + (𝑙 · 𝑒)) · 𝑔))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))
421, 4, 12, 13, 14, 15, 16, 41pntleml 26189 . . . . . 6 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ ((𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)) ∧ ∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒))) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4342expr 459 . . . . 5 (((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) ∧ (𝑐 ∈ ℝ+𝑙 ∈ (0(,)1))) → (∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
4443rexlimdvva 3296 . . . 4 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑟 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑟(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑢) / 𝑢)) ≤ 𝑒) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1))
453, 44mpi 20 . . 3 ((𝑏 ∈ ℝ+ ∧ ∀𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏) → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
4645rexlimiva 3283 . 2 (∃𝑏 ∈ ℝ+𝑟 ∈ ℝ+ (abs‘(((𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))‘𝑟) / 𝑟)) ≤ 𝑏 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
472, 46ax-mp 5 1 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wa 398  wcel 2114  wral 3140  wrex 3141   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  3c3 11696  cdc 12101  +crp 12392  (,)cioo 12741  [,)cico 12743  [,]cicc 12744  cexp 13432  abscabs 14595  𝑟 crli 14844  expce 15417  ψcchp 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-o1 14849  df-lo1 14850  df-sum 15045  df-ef 15423  df-e 15424  df-sin 15425  df-cos 15426  df-tan 15427  df-pi 15428  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-ulm 24967  df-log 25142  df-cxp 25143  df-atan 25447  df-em 25572  df-cht 25676  df-vma 25677  df-chp 25678  df-ppi 25679  df-mu 25680
This theorem is referenced by:  pnt2  26191
  Copyright terms: Public domain W3C validator