MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntleml Structured version   Visualization version   GIF version

Theorem pntleml 26173
Description: Lemma for pnt 26176. Equation 10.6.35 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem3.a (𝜑𝐴 ∈ ℝ+)
pntlem3.A (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
pntlemp.b (𝜑𝐵 ∈ ℝ+)
pntlemp.l (𝜑𝐿 ∈ (0(,)1))
pntlemp.d 𝐷 = (𝐴 + 1)
pntlemp.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlemp.K (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
Assertion
Ref Expression
pntleml (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑅,𝑒,𝑘,𝑢,𝑥,𝑦,𝑧   𝑒,𝐿,𝑘,𝑢,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝐵,𝑒,𝑘,𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑒,𝑘,𝑎)   𝐴(𝑢,𝑒,𝑘,𝑎)   𝐵(𝑢,𝑎)   𝑅(𝑎)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑎)   𝐿(𝑎)

Proof of Theorem pntleml
Dummy variables 𝑠 𝑟 𝑡 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem3.r . 2 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem3.a . 2 (𝜑𝐴 ∈ ℝ+)
3 pntlem3.A . 2 (𝜑 → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
4 eqid 2821 . 2 {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}
5 pntlemp.b . . . 4 (𝜑𝐵 ∈ ℝ+)
6 pntlemp.l . . . 4 (𝜑𝐿 ∈ (0(,)1))
7 pntlemp.d . . . 4 𝐷 = (𝐴 + 1)
8 pntlemp.f . . . 4 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
91, 2, 5, 6, 7, 8pntlemd 26156 . . 3 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
109simp3d 1140 . 2 (𝜑𝐹 ∈ ℝ+)
11 0m0e0 11744 . . . . 5 (0 − 0) = 0
12 simpr 487 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 = 0)
1312oveq1d 7157 . . . . . . . . 9 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = (0↑3))
14 3nn 11703 . . . . . . . . . 10 3 ∈ ℕ
15 0exp 13454 . . . . . . . . . 10 (3 ∈ ℕ → (0↑3) = 0)
1614, 15ax-mp 5 . . . . . . . . 9 (0↑3) = 0
1713, 16syl6eq 2872 . . . . . . . 8 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟↑3) = 0)
1817oveq2d 7158 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = (𝐹 · 0))
1910rpcnd 12420 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
2019mul01d 10825 . . . . . . . 8 (𝜑 → (𝐹 · 0) = 0)
2120ad2antrr 724 . . . . . . 7 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · 0) = 0)
2218, 21eqtrd 2856 . . . . . 6 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝐹 · (𝑟↑3)) = 0)
2312, 22oveq12d 7160 . . . . 5 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = (0 − 0))
2411, 23, 123eqtr4a 2882 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) = 𝑟)
25 simplr 767 . . . 4 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
2624, 25eqeltrd 2913 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 = 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
27 oveq1 7149 . . . . . . . . . . 11 (𝑦 = 𝑠 → (𝑦[,)+∞) = (𝑠[,)+∞))
2827raleqdv 3411 . . . . . . . . . 10 (𝑦 = 𝑠 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
2928cbvrexvw 3442 . . . . . . . . 9 (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 ↔ ∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
30 simplrr 776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ (0[,]𝐴))
31 0re 10629 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
322ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ+)
3332rpred 12418 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐴 ∈ ℝ)
34 elicc2 12788 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3531, 33, 34sylancr 589 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ (0[,]𝐴) ↔ (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴)))
3630, 35mpbid 234 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 ∈ ℝ ∧ 0 ≤ 𝑟𝑟𝐴))
3736simp1d 1138 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ)
3810ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐹 ∈ ℝ+)
3936simp2d 1139 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑟)
40 simplrl 775 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ≠ 0)
4137, 39, 40ne0gt0d 10763 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 < 𝑟)
4237, 41elrpd 12415 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟 ∈ ℝ+)
43 3z 12002 . . . . . . . . . . . . . . . 16 3 ∈ ℤ
44 rpexpcl 13438 . . . . . . . . . . . . . . . 16 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℤ) → (𝑟↑3) ∈ ℝ+)
4542, 43, 44sylancl 588 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟↑3) ∈ ℝ+)
4638, 45rpmulcld 12434 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ+)
4746rpred 12418 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝐹 · (𝑟↑3)) ∈ ℝ)
4837, 47resubcld 11054 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
493ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝐴)
505ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐵 ∈ ℝ+)
516ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝐿 ∈ (0(,)1))
52 pntlemp.K . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5352ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝐵 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5436simp3d 1140 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑟𝐴)
55 eqid 2821 . . . . . . . . . . . . . 14 (𝑟 / 𝐷) = (𝑟 / 𝐷)
56 eqid 2821 . . . . . . . . . . . . . 14 (exp‘(𝐵 / (𝑟 / 𝐷))) = (exp‘(𝐵 / (𝑟 / 𝐷)))
57 simprl 769 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ+)
58 1rp 12380 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
59 rpaddcl 12398 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ+ ∧ 1 ∈ ℝ+) → (𝑠 + 1) ∈ ℝ+)
6057, 58, 59sylancl 588 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑠 + 1) ∈ ℝ+)
6157rpge0d 12422 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ 𝑠)
62 1re 10627 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
6357rpred 12418 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ)
64 addge02 11137 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6562, 63, 64sylancr 589 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ 𝑠 ↔ 1 ≤ (𝑠 + 1)))
6661, 65mpbid 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 1 ≤ (𝑠 + 1))
6760, 66jca 514 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1) ∈ ℝ+ ∧ 1 ≤ (𝑠 + 1)))
6857rpxrd 12419 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ∈ ℝ*)
6963lep1d 11557 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 𝑠 ≤ (𝑠 + 1))
70 df-ico 12731 . . . . . . . . . . . . . . . . 17 [,) = (𝑡 ∈ ℝ*, 𝑟 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑡𝑤𝑤 < 𝑟)})
71 xrletr 12538 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℝ* ∧ (𝑠 + 1) ∈ ℝ*𝑣 ∈ ℝ*) → ((𝑠 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≤ 𝑣) → 𝑠𝑣))
7270, 70, 71ixxss1 12743 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℝ*𝑠 ≤ (𝑠 + 1)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
7368, 69, 72syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞))
74 simprr 771 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
75 ssralv 4021 . . . . . . . . . . . . . . 15 (((𝑠 + 1)[,)+∞) ⊆ (𝑠[,)+∞) → (∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
7673, 74, 75sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∀𝑧 ∈ ((𝑠 + 1)[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)
771, 32, 49, 50, 51, 7, 8, 53, 42, 54, 55, 56, 67, 76pntlemp 26172 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
78 rpre 12384 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
7978adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ)
8079leidd 11192 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤𝑤)
81 elicopnf 12820 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8279, 81syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑤 ∈ (𝑤[,)+∞) ↔ (𝑤 ∈ ℝ ∧ 𝑤𝑤)))
8379, 80, 82mpbir2and 711 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ (𝑤[,)+∞))
84 fveq2 6656 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝑅𝑣) = (𝑅𝑤))
85 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤𝑣 = 𝑤)
8684, 85oveq12d 7160 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑤) / 𝑤))
8786fveq2d 6660 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑤 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑤) / 𝑤)))
8887breq1d 5062 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
8988rspcv 3610 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (𝑤[,)+∞) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
9083, 89syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
911pntrf 26125 . . . . . . . . . . . . . . . . . . . . 21 𝑅:ℝ+⟶ℝ
9291ffvelrni 6836 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℝ+ → (𝑅𝑤) ∈ ℝ)
93 rerpdivcl 12406 . . . . . . . . . . . . . . . . . . . 20 (((𝑅𝑤) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9492, 93mpancom 686 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ+ → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9594adantl 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℝ)
9695recnd 10655 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((𝑅𝑤) / 𝑤) ∈ ℂ)
9796absge0d 14789 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → 0 ≤ (abs‘((𝑅𝑤) / 𝑤)))
9896abscld 14781 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ)
9948adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ)
100 letr 10720 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ (abs‘((𝑅𝑤) / 𝑤)) ∈ ℝ ∧ (𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10131, 98, 99, 100mp3an2i 1462 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((0 ≤ (abs‘((𝑅𝑤) / 𝑤)) ∧ (abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10297, 101mpand 693 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → ((abs‘((𝑅𝑤) / 𝑤)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10390, 102syld 47 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) ∧ 𝑤 ∈ ℝ+) → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
104103rexlimdva 3284 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
10577, 104mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))))
10646rpge0d 12422 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → 0 ≤ (𝐹 · (𝑟↑3)))
10737, 47subge02d 11218 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (0 ≤ (𝐹 · (𝑟↑3)) ↔ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟))
108106, 107mpbid 234 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝑟)
10948, 37, 33, 108, 54letrd 10783 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)
110 elicc2 12788 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11131, 33, 110sylancr 589 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ ℝ ∧ 0 ≤ (𝑟 − (𝐹 · (𝑟↑3))) ∧ (𝑟 − (𝐹 · (𝑟↑3))) ≤ 𝐴)))
11248, 105, 109, 111mpbir3and 1338 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴))
113112, 77jca 514 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) ∧ (𝑠 ∈ ℝ+ ∧ ∀𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟)) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
114113rexlimdvaa 3285 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑠 ∈ ℝ+𝑧 ∈ (𝑠[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
11529, 114syl5bi 244 . . . . . . . 8 ((𝜑 ∧ (𝑟 ≠ 0 ∧ 𝑟 ∈ (0[,]𝐴))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
116115anassrs 470 . . . . . . 7 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟 → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
117116expimpd 456 . . . . . 6 ((𝜑𝑟 ≠ 0) → ((𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟) → ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))))
118 breq2 5056 . . . . . . . 8 (𝑡 = 𝑟 → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
119118rexralbidv 3301 . . . . . . 7 (𝑡 = 𝑟 → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
120119elrab 3671 . . . . . 6 (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ (𝑟 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑟))
121 breq2 5056 . . . . . . . . 9 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
122121rexralbidv 3301 . . . . . . . 8 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
123 fveq2 6656 . . . . . . . . . . . . . 14 (𝑣 = 𝑧 → (𝑅𝑣) = (𝑅𝑧))
124 id 22 . . . . . . . . . . . . . 14 (𝑣 = 𝑧𝑣 = 𝑧)
125123, 124oveq12d 7160 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ((𝑅𝑣) / 𝑣) = ((𝑅𝑧) / 𝑧))
126125fveq2d 6660 . . . . . . . . . . . 12 (𝑣 = 𝑧 → (abs‘((𝑅𝑣) / 𝑣)) = (abs‘((𝑅𝑧) / 𝑧)))
127126breq1d 5062 . . . . . . . . . . 11 (𝑣 = 𝑧 → ((abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ (abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
128127cbvralvw 3441 . . . . . . . . . 10 (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
129 oveq1 7149 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝑤[,)+∞) = (𝑦[,)+∞))
130129raleqdv 3411 . . . . . . . . . 10 (𝑤 = 𝑦 → (∀𝑧 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
131128, 130syl5bb 285 . . . . . . . . 9 (𝑤 = 𝑦 → (∀𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
132131cbvrexvw 3442 . . . . . . . 8 (∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3))) ↔ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ (𝑟 − (𝐹 · (𝑟↑3))))
133122, 132syl6bbr 291 . . . . . . 7 (𝑡 = (𝑟 − (𝐹 · (𝑟↑3))) → (∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
134133elrab 3671 . . . . . 6 ((𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} ↔ ((𝑟 − (𝐹 · (𝑟↑3))) ∈ (0[,]𝐴) ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (𝑤[,)+∞)(abs‘((𝑅𝑣) / 𝑣)) ≤ (𝑟 − (𝐹 · (𝑟↑3)))))
135117, 120, 1343imtr4g 298 . . . . 5 ((𝜑𝑟 ≠ 0) → (𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡} → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}))
136135imp 409 . . . 4 (((𝜑𝑟 ≠ 0) ∧ 𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
137136an32s 650 . . 3 (((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) ∧ 𝑟 ≠ 0) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
13826, 137pm2.61dane 3104 . 2 ((𝜑𝑟 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡}) → (𝑟 − (𝐹 · (𝑟↑3))) ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑡})
1391, 2, 3, 4, 10, 138pntlem3 26171 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ⇝𝑟 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  wss 3924   class class class wbr 5052  cmpt 5132  cfv 6341  (class class class)co 7142  cr 10522  0cc0 10523  1c1 10524   + caddc 10526   · cmul 10528  +∞cpnf 10658  *cxr 10660   < clt 10661  cle 10662  cmin 10856   / cdiv 11283  cn 11624  2c2 11679  3c3 11680  cz 11968  cdc 12085  +crp 12376  (,)cioo 12725  [,)cico 12727  [,]cicc 12728  cexp 13419  abscabs 14578  𝑟 crli 14827  expce 15400  ψcchp 25656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601  ax-addf 10602  ax-mulf 10603
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7395  df-om 7567  df-1st 7675  df-2nd 7676  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8820  df-fi 8861  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-xnn0 11955  df-z 11969  df-dec 12086  df-uz 12231  df-q 12336  df-rp 12377  df-xneg 12494  df-xadd 12495  df-xmul 12496  df-ioo 12729  df-ioc 12730  df-ico 12731  df-icc 12732  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14411  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-limsup 14813  df-clim 14830  df-rlim 14831  df-o1 14832  df-lo1 14833  df-sum 15028  df-ef 15406  df-e 15407  df-sin 15408  df-cos 15409  df-tan 15410  df-pi 15411  df-dvds 15593  df-gcd 15827  df-prm 15999  df-pc 16157  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-starv 16563  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-unif 16571  df-hom 16572  df-cco 16573  df-rest 16679  df-topn 16680  df-0g 16698  df-gsum 16699  df-topgen 16700  df-pt 16701  df-prds 16704  df-xrs 16758  df-qtop 16763  df-imas 16764  df-xps 16766  df-mre 16840  df-mrc 16841  df-acs 16843  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-submnd 17940  df-mulg 18208  df-cntz 18430  df-cmn 18891  df-psmet 20520  df-xmet 20521  df-met 20522  df-bl 20523  df-mopn 20524  df-fbas 20525  df-fg 20526  df-cnfld 20529  df-top 21485  df-topon 21502  df-topsp 21524  df-bases 21537  df-cld 21610  df-ntr 21611  df-cls 21612  df-nei 21689  df-lp 21727  df-perf 21728  df-cn 21818  df-cnp 21819  df-haus 21906  df-cmp 21978  df-tx 22153  df-hmeo 22346  df-fil 22437  df-fm 22529  df-flim 22530  df-flf 22531  df-xms 22913  df-ms 22914  df-tms 22915  df-cncf 23469  df-limc 24449  df-dv 24450  df-ulm 24951  df-log 25126  df-cxp 25127  df-atan 25431  df-em 25556  df-cht 25660  df-vma 25661  df-chp 25662  df-ppi 25663  df-mu 25664
This theorem is referenced by:  pnt3  26174
  Copyright terms: Public domain W3C validator