MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntibnd Structured version   Visualization version   GIF version

Theorem pntibnd 25327
Description: Lemma for pnt 25348. Establish smallness of 𝑅 on an interval. Lemma 10.6.2 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntibnd 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Distinct variable groups:   𝑥,𝑧,𝑦   𝑢,𝑘,𝑥,𝑦,𝑧   𝑒,𝑐,𝑘,𝑙,𝑢,𝑥,𝑦,𝑧,𝑅   𝑒,𝑎,𝑘,𝑢,𝑥,𝑦,𝑧
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntibnd
Dummy variables 𝑛 𝑚 𝑣 𝑏 𝑑 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrmax 25298 . 2 𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑
31pntpbnd 25322 . 2 𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)
4 reeanv 3136 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) ↔ (∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)))
5 2rp 11875 . . . . . . . . 9 2 ∈ ℝ+
6 rpmulcl 11893 . . . . . . . . 9 ((2 ∈ ℝ+𝑏 ∈ ℝ+) → (2 · 𝑏) ∈ ℝ+)
75, 6mpan 706 . . . . . . . 8 (𝑏 ∈ ℝ+ → (2 · 𝑏) ∈ ℝ+)
8 2re 11128 . . . . . . . . 9 2 ∈ ℝ
9 1lt2 11232 . . . . . . . . 9 1 < 2
10 rplogcl 24395 . . . . . . . . 9 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
118, 9, 10mp2an 708 . . . . . . . 8 (log‘2) ∈ ℝ+
12 rpaddcl 11892 . . . . . . . 8 (((2 · 𝑏) ∈ ℝ+ ∧ (log‘2) ∈ ℝ+) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
137, 11, 12sylancl 695 . . . . . . 7 (𝑏 ∈ ℝ+ → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
1413ad2antlr 763 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((2 · 𝑏) + (log‘2)) ∈ ℝ+)
15 id 22 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ∈ ℝ+)
16 eqid 2651 . . . . . . . 8 ((1 / 4) / (𝑑 + 3)) = ((1 / 4) / (𝑑 + 3))
171, 15, 16pntibndlem1 25323 . . . . . . 7 (𝑑 ∈ ℝ+ → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
1817ad2antrr 762 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1))
19 elioore 12243 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ)
20 eliooord 12271 . . . . . . . . . . . . . . . 16 (𝑒 ∈ (0(,)1) → (0 < 𝑒𝑒 < 1))
2120simpld 474 . . . . . . . . . . . . . . 15 (𝑒 ∈ (0(,)1) → 0 < 𝑒)
2219, 21elrpd 11907 . . . . . . . . . . . . . 14 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ+)
2322rphalfcld 11922 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ+)
2423rpred 11910 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ ℝ)
2523rpgt0d 11913 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → 0 < (𝑒 / 2))
26 1red 10093 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 1 ∈ ℝ)
27 rphalflt 11898 . . . . . . . . . . . . . 14 (𝑒 ∈ ℝ+ → (𝑒 / 2) < 𝑒)
2822, 27syl 17 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 𝑒)
2920simprd 478 . . . . . . . . . . . . 13 (𝑒 ∈ (0(,)1) → 𝑒 < 1)
3024, 19, 26, 28, 29lttrd 10236 . . . . . . . . . . . 12 (𝑒 ∈ (0(,)1) → (𝑒 / 2) < 1)
31 0xr 10124 . . . . . . . . . . . . 13 0 ∈ ℝ*
32 1re 10077 . . . . . . . . . . . . . 14 1 ∈ ℝ
3332rexri 10135 . . . . . . . . . . . . 13 1 ∈ ℝ*
34 elioo2 12254 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1)))
3531, 33, 34mp2an 708 . . . . . . . . . . . 12 ((𝑒 / 2) ∈ (0(,)1) ↔ ((𝑒 / 2) ∈ ℝ ∧ 0 < (𝑒 / 2) ∧ (𝑒 / 2) < 1))
3624, 25, 30, 35syl3anbrc 1265 . . . . . . . . . . 11 (𝑒 ∈ (0(,)1) → (𝑒 / 2) ∈ (0(,)1))
3736adantl 481 . . . . . . . . . 10 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (𝑒 / 2) ∈ (0(,)1))
38 oveq2 6698 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (𝑏 / 𝑓) = (𝑏 / (𝑒 / 2)))
3938fveq2d 6233 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (exp‘(𝑏 / 𝑓)) = (exp‘(𝑏 / (𝑒 / 2))))
4039oveq1d 6705 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → ((exp‘(𝑏 / 𝑓))[,)+∞) = ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞))
41 breq2 4689 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑒 / 2) → ((abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓 ↔ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
4241anbi2d 740 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒 / 2) → (((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4342rexbidv 3081 . . . . . . . . . . . . . 14 (𝑓 = (𝑒 / 2) → (∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4443ralbidv 3015 . . . . . . . . . . . . 13 (𝑓 = (𝑒 / 2) → (∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4540, 44raleqbidv 3182 . . . . . . . . . . . 12 (𝑓 = (𝑒 / 2) → (∀𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4645rexbidv 3081 . . . . . . . . . . 11 (𝑓 = (𝑒 / 2) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) ↔ ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4746rspcv 3336 . . . . . . . . . 10 ((𝑒 / 2) ∈ (0(,)1) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
4837, 47syl 17 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2))))
49 simp-4l 823 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑑 ∈ ℝ+)
50 simpllr 815 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑)
51 simplr 807 . . . . . . . . . . . 12 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → 𝑏 ∈ ℝ+)
5251ad2antrr 762 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑏 ∈ ℝ+)
53 eqid 2651 . . . . . . . . . . 11 (exp‘(𝑏 / (𝑒 / 2))) = (exp‘(𝑏 / (𝑒 / 2)))
54 eqid 2651 . . . . . . . . . . 11 ((2 · 𝑏) + (log‘2)) = ((2 · 𝑏) + (log‘2))
55 simplr 807 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑒 ∈ (0(,)1))
56 simprl 809 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → 𝑔 ∈ ℝ+)
57 simprr 811 . . . . . . . . . . 11 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))
581, 49, 16, 50, 52, 53, 54, 55, 56, 57pntibndlem3 25326 . . . . . . . . . 10 (((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑔 ∈ ℝ+ ∧ ∀𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)))) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
5958rexlimdvaa 3061 . . . . . . . . 9 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / (𝑒 / 2)))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ (𝑒 / 2)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6048, 59syld 47 . . . . . . . 8 ((((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6160ralrimdva 2998 . . . . . . 7 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑) → (∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6261impr 648 . . . . . 6 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
63 oveq1 6697 . . . . . . . . . . . 12 (𝑐 = ((2 · 𝑏) + (log‘2)) → (𝑐 / 𝑒) = (((2 · 𝑏) + (log‘2)) / 𝑒))
6463fveq2d 6233 . . . . . . . . . . 11 (𝑐 = ((2 · 𝑏) + (log‘2)) → (exp‘(𝑐 / 𝑒)) = (exp‘(((2 · 𝑏) + (log‘2)) / 𝑒)))
6564oveq1d 6705 . . . . . . . . . 10 (𝑐 = ((2 · 𝑏) + (log‘2)) → ((exp‘(𝑐 / 𝑒))[,)+∞) = ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞))
6665raleqdv 3174 . . . . . . . . 9 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6766rexbidv 3081 . . . . . . . 8 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
6867ralbidv 3015 . . . . . . 7 (𝑐 = ((2 · 𝑏) + (log‘2)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
69 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑙 · 𝑒) = (((1 / 4) / (𝑑 + 3)) · 𝑒))
7069oveq2d 6706 . . . . . . . . . . . . . . 15 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (1 + (𝑙 · 𝑒)) = (1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)))
7170oveq1d 6705 . . . . . . . . . . . . . 14 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((1 + (𝑙 · 𝑒)) · 𝑧) = ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))
7271breq1d 4695 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦) ↔ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)))
7372anbi2d 740 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ↔ (𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦))))
7471oveq2d 6706 . . . . . . . . . . . . 13 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧)) = (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧)))
7574raleqdv 3174 . . . . . . . . . . . 12 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒 ↔ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
7673, 75anbi12d 747 . . . . . . . . . . 11 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7776rexbidv 3081 . . . . . . . . . 10 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7877ralbidv 3015 . . . . . . . . 9 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
7978rexralbidv 3087 . . . . . . . 8 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
8079ralbidv 3015 . . . . . . 7 (𝑙 = ((1 / 4) / (𝑑 + 3)) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
8168, 80rspc2ev 3355 . . . . . 6 ((((2 · 𝑏) + (log‘2)) ∈ ℝ+ ∧ ((1 / 4) / (𝑑 + 3)) ∈ (0(,)1) ∧ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(((2 · 𝑏) + (log‘2)) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (((1 / 4) / (𝑑 + 3)) · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8214, 18, 62, 81syl3anc 1366 . . . . 5 (((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓))) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
8382ex 449 . . . 4 ((𝑑 ∈ ℝ+𝑏 ∈ ℝ+) → ((∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)))
8483rexlimivv 3065 . . 3 (∃𝑑 ∈ ℝ+𝑏 ∈ ℝ+ (∀𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∀𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
854, 84sylbir 225 . 2 ((∃𝑑 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑑 ∧ ∃𝑏 ∈ ℝ+𝑓 ∈ (0(,)1)∃𝑔 ∈ ℝ+𝑚 ∈ ((exp‘(𝑏 / 𝑓))[,)+∞)∀𝑣 ∈ (𝑔(,)+∞)∃𝑛 ∈ ℕ ((𝑣 < 𝑛𝑛 ≤ (𝑚 · 𝑣)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑓)) → ∃𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒))
862, 3, 85mp2an 708 1 𝑐 ∈ ℝ+𝑙 ∈ (0(,)1)∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝑙 · 𝑒)) · 𝑧) < (𝑘 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝑙 · 𝑒)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  4c4 11110  +crp 11870  (,)cioo 12213  [,)cico 12215  [,]cicc 12216  abscabs 14018  expce 14836  logclog 24346  ψcchp 24864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-o1 14265  df-lo1 14266  df-sum 14461  df-ef 14842  df-e 14843  df-sin 14844  df-cos 14845  df-pi 14847  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349  df-em 24764  df-cht 24868  df-vma 24869  df-chp 24870  df-ppi 24871  df-mu 24872
This theorem is referenced by:  pnt3  25346
  Copyright terms: Public domain W3C validator