Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco1mhm Structured version   Visualization version   GIF version

Theorem pwsco1mhm 17310
 Description: Right composition with a function on the index sets yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco1mhm.y 𝑌 = (𝑅s 𝐴)
pwsco1mhm.z 𝑍 = (𝑅s 𝐵)
pwsco1mhm.c 𝐶 = (Base‘𝑍)
pwsco1mhm.r (𝜑𝑅 ∈ Mnd)
pwsco1mhm.a (𝜑𝐴𝑉)
pwsco1mhm.b (𝜑𝐵𝑊)
pwsco1mhm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
pwsco1mhm (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
Distinct variable groups:   𝐶,𝑔   𝑔,𝑌   𝑔,𝑍   𝑔,𝐹   𝜑,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝐵(𝑔)   𝑅(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem pwsco1mhm
Dummy variables 𝑥 𝑧 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco1mhm.r . . . 4 (𝜑𝑅 ∈ Mnd)
2 pwsco1mhm.b . . . 4 (𝜑𝐵𝑊)
3 pwsco1mhm.z . . . . 5 𝑍 = (𝑅s 𝐵)
43pwsmnd 17265 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → 𝑍 ∈ Mnd)
51, 2, 4syl2anc 692 . . 3 (𝜑𝑍 ∈ Mnd)
6 pwsco1mhm.a . . . 4 (𝜑𝐴𝑉)
7 pwsco1mhm.y . . . . 5 𝑌 = (𝑅s 𝐴)
87pwsmnd 17265 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → 𝑌 ∈ Mnd)
91, 6, 8syl2anc 692 . . 3 (𝜑𝑌 ∈ Mnd)
105, 9jca 554 . 2 (𝜑 → (𝑍 ∈ Mnd ∧ 𝑌 ∈ Mnd))
11 eqid 2621 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
12 pwsco1mhm.c . . . . . . . . 9 𝐶 = (Base‘𝑍)
133, 11, 12pwselbasb 16088 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → (𝑔𝐶𝑔:𝐵⟶(Base‘𝑅)))
141, 2, 13syl2anc 692 . . . . . . 7 (𝜑 → (𝑔𝐶𝑔:𝐵⟶(Base‘𝑅)))
1514biimpa 501 . . . . . 6 ((𝜑𝑔𝐶) → 𝑔:𝐵⟶(Base‘𝑅))
16 pwsco1mhm.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
1716adantr 481 . . . . . 6 ((𝜑𝑔𝐶) → 𝐹:𝐴𝐵)
18 fco 6025 . . . . . 6 ((𝑔:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → (𝑔𝐹):𝐴⟶(Base‘𝑅))
1915, 17, 18syl2anc 692 . . . . 5 ((𝜑𝑔𝐶) → (𝑔𝐹):𝐴⟶(Base‘𝑅))
20 eqid 2621 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
217, 11, 20pwselbasb 16088 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → ((𝑔𝐹) ∈ (Base‘𝑌) ↔ (𝑔𝐹):𝐴⟶(Base‘𝑅)))
221, 6, 21syl2anc 692 . . . . . 6 (𝜑 → ((𝑔𝐹) ∈ (Base‘𝑌) ↔ (𝑔𝐹):𝐴⟶(Base‘𝑅)))
2322adantr 481 . . . . 5 ((𝜑𝑔𝐶) → ((𝑔𝐹) ∈ (Base‘𝑌) ↔ (𝑔𝐹):𝐴⟶(Base‘𝑅)))
2419, 23mpbird 247 . . . 4 ((𝜑𝑔𝐶) → (𝑔𝐹) ∈ (Base‘𝑌))
25 eqid 2621 . . . 4 (𝑔𝐶 ↦ (𝑔𝐹)) = (𝑔𝐶 ↦ (𝑔𝐹))
2624, 25fmptd 6351 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)):𝐶⟶(Base‘𝑌))
276adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐴𝑉)
28 fvexd 6170 . . . . . . 7 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑧𝐴) → (𝑥‘(𝐹𝑧)) ∈ V)
29 fvexd 6170 . . . . . . 7 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑧𝐴) → (𝑦‘(𝐹𝑧)) ∈ V)
3016adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐴𝐵)
3130ffvelrnda 6325 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
3230feqmptd 6216 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
331adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑅 ∈ Mnd)
342adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐵𝑊)
35 simprl 793 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
363, 11, 12, 33, 34, 35pwselbas 16089 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥:𝐵⟶(Base‘𝑅))
3736feqmptd 6216 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 = (𝑤𝐵 ↦ (𝑥𝑤)))
38 fveq2 6158 . . . . . . . 8 (𝑤 = (𝐹𝑧) → (𝑥𝑤) = (𝑥‘(𝐹𝑧)))
3931, 32, 37, 38fmptco 6362 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹) = (𝑧𝐴 ↦ (𝑥‘(𝐹𝑧))))
40 simprr 795 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
413, 11, 12, 33, 34, 40pwselbas 16089 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦:𝐵⟶(Base‘𝑅))
4241feqmptd 6216 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 = (𝑤𝐵 ↦ (𝑦𝑤)))
43 fveq2 6158 . . . . . . . 8 (𝑤 = (𝐹𝑧) → (𝑦𝑤) = (𝑦‘(𝐹𝑧)))
4431, 32, 42, 43fmptco 6362 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹) = (𝑧𝐴 ↦ (𝑦‘(𝐹𝑧))))
4527, 28, 29, 39, 44offval2 6879 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥𝐹) ∘𝑓 (+g𝑅)(𝑦𝐹)) = (𝑧𝐴 ↦ ((𝑥‘(𝐹𝑧))(+g𝑅)(𝑦‘(𝐹𝑧)))))
46 fco 6025 . . . . . . . . 9 ((𝑥:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → (𝑥𝐹):𝐴⟶(Base‘𝑅))
4736, 30, 46syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹):𝐴⟶(Base‘𝑅))
487, 11, 20pwselbasb 16088 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → ((𝑥𝐹) ∈ (Base‘𝑌) ↔ (𝑥𝐹):𝐴⟶(Base‘𝑅)))
4933, 27, 48syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥𝐹) ∈ (Base‘𝑌) ↔ (𝑥𝐹):𝐴⟶(Base‘𝑅)))
5047, 49mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹) ∈ (Base‘𝑌))
51 fco 6025 . . . . . . . . 9 ((𝑦:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → (𝑦𝐹):𝐴⟶(Base‘𝑅))
5241, 30, 51syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹):𝐴⟶(Base‘𝑅))
537, 11, 20pwselbasb 16088 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → ((𝑦𝐹) ∈ (Base‘𝑌) ↔ (𝑦𝐹):𝐴⟶(Base‘𝑅)))
5433, 27, 53syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑦𝐹) ∈ (Base‘𝑌) ↔ (𝑦𝐹):𝐴⟶(Base‘𝑅)))
5552, 54mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹) ∈ (Base‘𝑌))
56 eqid 2621 . . . . . . 7 (+g𝑅) = (+g𝑅)
57 eqid 2621 . . . . . . 7 (+g𝑌) = (+g𝑌)
587, 20, 33, 27, 50, 55, 56, 57pwsplusgval 16090 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥𝐹)(+g𝑌)(𝑦𝐹)) = ((𝑥𝐹) ∘𝑓 (+g𝑅)(𝑦𝐹)))
59 eqid 2621 . . . . . . . . 9 (+g𝑍) = (+g𝑍)
603, 12, 33, 34, 35, 40, 56, 59pwsplusgval 16090 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) = (𝑥𝑓 (+g𝑅)𝑦))
61 fvexd 6170 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑤𝐵) → (𝑥𝑤) ∈ V)
62 fvexd 6170 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑤𝐵) → (𝑦𝑤) ∈ V)
6334, 61, 62, 37, 42offval2 6879 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝑓 (+g𝑅)𝑦) = (𝑤𝐵 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6460, 63eqtrd 2655 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) = (𝑤𝐵 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6538, 43oveq12d 6633 . . . . . . 7 (𝑤 = (𝐹𝑧) → ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) = ((𝑥‘(𝐹𝑧))(+g𝑅)(𝑦‘(𝐹𝑧))))
6631, 32, 64, 65fmptco 6362 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) = (𝑧𝐴 ↦ ((𝑥‘(𝐹𝑧))(+g𝑅)(𝑦‘(𝐹𝑧)))))
6745, 58, 663eqtr4rd 2666 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) = ((𝑥𝐹)(+g𝑌)(𝑦𝐹)))
6812, 59mndcl 17241 . . . . . . . 8 ((𝑍 ∈ Mnd ∧ 𝑥𝐶𝑦𝐶) → (𝑥(+g𝑍)𝑦) ∈ 𝐶)
69683expb 1263 . . . . . . 7 ((𝑍 ∈ Mnd ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) ∈ 𝐶)
705, 69sylan 488 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) ∈ 𝐶)
71 ovex 6643 . . . . . . 7 (𝑥(+g𝑍)𝑦) ∈ V
72 fex 6455 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
7316, 6, 72syl2anc 692 . . . . . . . 8 (𝜑𝐹 ∈ V)
7473adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 ∈ V)
75 coexg 7079 . . . . . . 7 (((𝑥(+g𝑍)𝑦) ∈ V ∧ 𝐹 ∈ V) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) ∈ V)
7671, 74, 75sylancr 694 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) ∈ V)
77 coeq1 5249 . . . . . . 7 (𝑔 = (𝑥(+g𝑍)𝑦) → (𝑔𝐹) = ((𝑥(+g𝑍)𝑦) ∘ 𝐹))
7877, 25fvmptg 6247 . . . . . 6 (((𝑥(+g𝑍)𝑦) ∈ 𝐶 ∧ ((𝑥(+g𝑍)𝑦) ∘ 𝐹) ∈ V) → ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = ((𝑥(+g𝑍)𝑦) ∘ 𝐹))
7970, 76, 78syl2anc 692 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = ((𝑥(+g𝑍)𝑦) ∘ 𝐹))
80 coexg 7079 . . . . . . . 8 ((𝑥𝐶𝐹 ∈ V) → (𝑥𝐹) ∈ V)
8135, 74, 80syl2anc 692 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹) ∈ V)
82 coeq1 5249 . . . . . . . 8 (𝑔 = 𝑥 → (𝑔𝐹) = (𝑥𝐹))
8382, 25fvmptg 6247 . . . . . . 7 ((𝑥𝐶 ∧ (𝑥𝐹) ∈ V) → ((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥) = (𝑥𝐹))
8435, 81, 83syl2anc 692 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥) = (𝑥𝐹))
85 coexg 7079 . . . . . . . 8 ((𝑦𝐶𝐹 ∈ V) → (𝑦𝐹) ∈ V)
8640, 74, 85syl2anc 692 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹) ∈ V)
87 coeq1 5249 . . . . . . . 8 (𝑔 = 𝑦 → (𝑔𝐹) = (𝑦𝐹))
8887, 25fvmptg 6247 . . . . . . 7 ((𝑦𝐶 ∧ (𝑦𝐹) ∈ V) → ((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦) = (𝑦𝐹))
8940, 86, 88syl2anc 692 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦) = (𝑦𝐹))
9084, 89oveq12d 6633 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)) = ((𝑥𝐹)(+g𝑌)(𝑦𝐹)))
9167, 79, 903eqtr4d 2665 . . . 4 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)))
9291ralrimivva 2967 . . 3 (𝜑 → ∀𝑥𝐶𝑦𝐶 ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)))
93 eqid 2621 . . . . . . 7 (0g𝑍) = (0g𝑍)
9412, 93mndidcl 17248 . . . . . 6 (𝑍 ∈ Mnd → (0g𝑍) ∈ 𝐶)
955, 94syl 17 . . . . 5 (𝜑 → (0g𝑍) ∈ 𝐶)
96 coexg 7079 . . . . . 6 (((0g𝑍) ∈ 𝐶𝐹 ∈ V) → ((0g𝑍) ∘ 𝐹) ∈ V)
9795, 73, 96syl2anc 692 . . . . 5 (𝜑 → ((0g𝑍) ∘ 𝐹) ∈ V)
98 coeq1 5249 . . . . . 6 (𝑔 = (0g𝑍) → (𝑔𝐹) = ((0g𝑍) ∘ 𝐹))
9998, 25fvmptg 6247 . . . . 5 (((0g𝑍) ∈ 𝐶 ∧ ((0g𝑍) ∘ 𝐹) ∈ V) → ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = ((0g𝑍) ∘ 𝐹))
10095, 97, 99syl2anc 692 . . . 4 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = ((0g𝑍) ∘ 𝐹))
1013, 11, 12, 1, 2, 95pwselbas 16089 . . . . . . 7 (𝜑 → (0g𝑍):𝐵⟶(Base‘𝑅))
102 fco 6025 . . . . . . 7 (((0g𝑍):𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → ((0g𝑍) ∘ 𝐹):𝐴⟶(Base‘𝑅))
103101, 16, 102syl2anc 692 . . . . . 6 (𝜑 → ((0g𝑍) ∘ 𝐹):𝐴⟶(Base‘𝑅))
104 ffn 6012 . . . . . 6 (((0g𝑍) ∘ 𝐹):𝐴⟶(Base‘𝑅) → ((0g𝑍) ∘ 𝐹) Fn 𝐴)
105103, 104syl 17 . . . . 5 (𝜑 → ((0g𝑍) ∘ 𝐹) Fn 𝐴)
106 fvexd 6170 . . . . . 6 (𝜑 → (0g𝑅) ∈ V)
107 fnconstg 6060 . . . . . 6 ((0g𝑅) ∈ V → (𝐴 × {(0g𝑅)}) Fn 𝐴)
108106, 107syl 17 . . . . 5 (𝜑 → (𝐴 × {(0g𝑅)}) Fn 𝐴)
109 eqid 2621 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1103, 109pws0g 17266 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → (𝐵 × {(0g𝑅)}) = (0g𝑍))
1111, 2, 110syl2anc 692 . . . . . . . . 9 (𝜑 → (𝐵 × {(0g𝑅)}) = (0g𝑍))
112111fveq1d 6160 . . . . . . . 8 (𝜑 → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = ((0g𝑍)‘(𝐹𝑥)))
113112adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = ((0g𝑍)‘(𝐹𝑥)))
114 fvex 6168 . . . . . . . 8 (0g𝑅) ∈ V
11516ffvelrnda 6325 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
116 fvconst2g 6432 . . . . . . . 8 (((0g𝑅) ∈ V ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = (0g𝑅))
117114, 115, 116sylancr 694 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = (0g𝑅))
118113, 117eqtr3d 2657 . . . . . 6 ((𝜑𝑥𝐴) → ((0g𝑍)‘(𝐹𝑥)) = (0g𝑅))
119 fvco3 6242 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → (((0g𝑍) ∘ 𝐹)‘𝑥) = ((0g𝑍)‘(𝐹𝑥)))
12016, 119sylan 488 . . . . . 6 ((𝜑𝑥𝐴) → (((0g𝑍) ∘ 𝐹)‘𝑥) = ((0g𝑍)‘(𝐹𝑥)))
121 fvconst2g 6432 . . . . . . 7 (((0g𝑅) ∈ V ∧ 𝑥𝐴) → ((𝐴 × {(0g𝑅)})‘𝑥) = (0g𝑅))
122106, 121sylan 488 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐴 × {(0g𝑅)})‘𝑥) = (0g𝑅))
123118, 120, 1223eqtr4d 2665 . . . . 5 ((𝜑𝑥𝐴) → (((0g𝑍) ∘ 𝐹)‘𝑥) = ((𝐴 × {(0g𝑅)})‘𝑥))
124105, 108, 123eqfnfvd 6280 . . . 4 (𝜑 → ((0g𝑍) ∘ 𝐹) = (𝐴 × {(0g𝑅)}))
1257, 109pws0g 17266 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → (𝐴 × {(0g𝑅)}) = (0g𝑌))
1261, 6, 125syl2anc 692 . . . 4 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝑌))
127100, 124, 1263eqtrd 2659 . . 3 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = (0g𝑌))
12826, 92, 1273jca 1240 . 2 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹)):𝐶⟶(Base‘𝑌) ∧ ∀𝑥𝐶𝑦𝐶 ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)) ∧ ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = (0g𝑌)))
129 eqid 2621 . . 3 (0g𝑌) = (0g𝑌)
13012, 20, 59, 57, 93, 129ismhm 17277 . 2 ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌) ↔ ((𝑍 ∈ Mnd ∧ 𝑌 ∈ Mnd) ∧ ((𝑔𝐶 ↦ (𝑔𝐹)):𝐶⟶(Base‘𝑌) ∧ ∀𝑥𝐶𝑦𝐶 ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)) ∧ ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = (0g𝑌))))
13110, 128, 130sylanbrc 697 1 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2908  Vcvv 3190  {csn 4155   ↦ cmpt 4683   × cxp 5082   ∘ ccom 5088   Fn wfn 5852  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615   ∘𝑓 cof 6860  Basecbs 15800  +gcplusg 15881  0gc0g 16040   ↑s cpws 16047  Mndcmnd 17234   MndHom cmhm 17273 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-hom 15906  df-cco 15907  df-0g 16042  df-prds 16048  df-pws 16050  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275 This theorem is referenced by:  pwsco1rhm  18678
 Copyright terms: Public domain W3C validator