MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxds Structured version   Visualization version   GIF version

Theorem rrxds 22906
Description: The distance over generalized Euclidean spaces. Compare with df-rrn 32591. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxds (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxds
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
21rrxval 22900 . . 3 (𝐼𝑉𝐻 = (toℂHil‘(ℝfld freeLMod 𝐼)))
32fveq2d 6092 . 2 (𝐼𝑉 → (dist‘𝐻) = (dist‘(toℂHil‘(ℝfld freeLMod 𝐼))))
4 recrng 19731 . . . . 5 fld ∈ *-Ring
5 srngring 18621 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
64, 5ax-mp 5 . . . 4 fld ∈ Ring
7 eqid 2609 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
87frlmlmod 19854 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
96, 8mpan 701 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
10 lmodgrp 18639 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
11 eqid 2609 . . . 4 (toℂHil‘(ℝfld freeLMod 𝐼)) = (toℂHil‘(ℝfld freeLMod 𝐼))
12 eqid 2609 . . . 4 (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂHil‘(ℝfld freeLMod 𝐼)))
13 eqid 2609 . . . 4 (-g‘(ℝfld freeLMod 𝐼)) = (-g‘(ℝfld freeLMod 𝐼))
1411, 12, 13tchds 22759 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → ((norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂHil‘(ℝfld freeLMod 𝐼))))
159, 10, 143syl 18 . 2 (𝐼𝑉 → ((norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂHil‘(ℝfld freeLMod 𝐼))))
16 eqid 2609 . . . . . . . 8 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
1716, 13grpsubf 17263 . . . . . . 7 ((ℝfld freeLMod 𝐼) ∈ Grp → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
189, 10, 173syl 18 . . . . . 6 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
19 rrxbase.b . . . . . . . . . 10 𝐵 = (Base‘𝐻)
201, 19rrxbase 22901 . . . . . . . . 9 (𝐼𝑉𝐵 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0})
21 rebase 19716 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
22 re0g 19722 . . . . . . . . . . 11 0 = (0g‘ℝfld)
23 eqid 2609 . . . . . . . . . . 11 { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
247, 21, 22, 23frlmbas 19860 . . . . . . . . . 10 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
256, 24mpan 701 . . . . . . . . 9 (𝐼𝑉 → { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
2620, 25eqtrd 2643 . . . . . . . 8 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2726sqxpeqd 5055 . . . . . . 7 (𝐼𝑉 → (𝐵 × 𝐵) = ((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼))))
2827, 26feq23d 5939 . . . . . 6 (𝐼𝑉 → ((-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵 ↔ (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼))))
2918, 28mpbird 245 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵)
3029fovrnda 6680 . . . 4 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) ∈ 𝐵)
31 ffn 5944 . . . . . 6 ((-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵 → (-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵))
3229, 31syl 17 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵))
33 fnov 6644 . . . . 5 ((-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵) ↔ (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
3432, 33sylib 206 . . . 4 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
351, 19rrxnm 22904 . . . . 5 (𝐼𝑉 → (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))) = (norm‘𝐻))
362fveq2d 6092 . . . . 5 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))))
3735, 36eqtr2d 2644 . . . 4 (𝐼𝑉 → (norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) = (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))))
38 fveq1 6087 . . . . . . . 8 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥) = ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥))
3938oveq1d 6542 . . . . . . 7 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → ((𝑥)↑2) = (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))
4039mpteq2dv 4667 . . . . . 6 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥𝐼 ↦ ((𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))
4140oveq2d 6543 . . . . 5 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))
4241fveq2d 6092 . . . 4 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))))
4330, 34, 37, 42fmpt2co 7124 . . 3 (𝐼𝑉 → ((norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))))
44 simp1 1053 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝐼𝑉)
45 simprl 789 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
4626adantr 479 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
4745, 46eleqtrd 2689 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
48473impb 1251 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
497, 21, 16frlmbasmap 19864 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
5044, 48, 49syl2anc 690 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (ℝ ↑𝑚 𝐼))
51 elmapi 7742 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑𝑚 𝐼) → 𝑓:𝐼⟶ℝ)
5250, 51syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓:𝐼⟶ℝ)
53 ffn 5944 . . . . . . . . . . . 12 (𝑓:𝐼⟶ℝ → 𝑓 Fn 𝐼)
5452, 53syl 17 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 Fn 𝐼)
55 simprr 791 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
5655, 46eleqtrd 2689 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
57563impb 1251 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
587, 21, 16frlmbasmap 19864 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑔 ∈ (ℝ ↑𝑚 𝐼))
5944, 57, 58syl2anc 690 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (ℝ ↑𝑚 𝐼))
60 elmapi 7742 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑𝑚 𝐼) → 𝑔:𝐼⟶ℝ)
6159, 60syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔:𝐼⟶ℝ)
62 ffn 5944 . . . . . . . . . . . 12 (𝑔:𝐼⟶ℝ → 𝑔 Fn 𝐼)
6361, 62syl 17 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 Fn 𝐼)
64 inidm 3783 . . . . . . . . . . 11 (𝐼𝐼) = 𝐼
65 eqidd 2610 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
66 eqidd 2610 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
6754, 63, 44, 44, 64, 65, 66offval 6779 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓𝑓 (-g‘ℝfld)𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
686a1i 11 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → ℝfld ∈ Ring)
69 simpl 471 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑉)
70 eqid 2609 . . . . . . . . . . . 12 (-g‘ℝfld) = (-g‘ℝfld)
717, 16, 68, 69, 47, 56, 70, 13frlmsubgval 19869 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓𝑓 (-g‘ℝfld)𝑔))
72713impb 1251 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓𝑓 (-g‘ℝfld)𝑔))
7352ffvelrnda 6252 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
7461ffvelrnda 6252 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
7570resubgval 19719 . . . . . . . . . . . 12 (((𝑓𝑥) ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7673, 74, 75syl2anc 690 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7776mpteq2dva 4666 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
7867, 72, 773eqtr4d 2653 . . . . . . . . 9 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))))
7973, 74resubcld 10309 . . . . . . . . 9 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
8078, 79fvmpt2d 6187 . . . . . . . 8 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥) = ((𝑓𝑥) − (𝑔𝑥)))
8180oveq1d 6542 . . . . . . 7 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2) = (((𝑓𝑥) − (𝑔𝑥))↑2))
8281mpteq2dva 4666 . . . . . 6 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
8382oveq2d 6543 . . . . 5 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))
8483fveq2d 6092 . . . 4 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))
8584mpt2eq3dva 6595 . . 3 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
8643, 85eqtrd 2643 . 2 (𝐼𝑉 → ((norm‘(toℂHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
873, 15, 863eqtr2rd 2650 1 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  {crab 2899   class class class wbr 4577  cmpt 4637   × cxp 5026  ccom 5032   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  cmpt2 6529  𝑓 cof 6770  𝑚 cmap 7721   finSupp cfsupp 8135  cr 9791  0cc0 9792  cmin 10117  2c2 10917  cexp 12677  csqrt 13767  Basecbs 15641  distcds 15723   Σg cgsu 15870  Grpcgrp 17191  -gcsg 17193  Ringcrg 18316  *-Ringcsr 18613  LModclmod 18632  fldcrefld 19714   freeLMod cfrlm 19851  normcnm 22132  toℂHilctch 22699  ℝ^crrx 22896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-sup 8208  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-rp 11665  df-fz 12153  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-0g 15871  df-prds 15877  df-pws 15879  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mhm 17104  df-grp 17194  df-minusg 17195  df-sbg 17196  df-subg 17360  df-ghm 17427  df-cmn 17964  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-oppr 18392  df-dvdsr 18410  df-unit 18411  df-invr 18441  df-dvr 18452  df-rnghom 18484  df-drng 18518  df-field 18519  df-subrg 18547  df-staf 18614  df-srng 18615  df-lmod 18634  df-lss 18700  df-sra 18939  df-rgmod 18940  df-cnfld 19514  df-refld 19715  df-dsmm 19837  df-frlm 19852  df-nm 22138  df-tng 22140  df-tch 22701  df-rrx 22898
This theorem is referenced by:  rrxmval  22913  rrxmfval  22914  rrxtopn  38974  rrxdsfi  38978
  Copyright terms: Public domain W3C validator