MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irr Structured version   Visualization version   GIF version

Theorem sqrt2irr 14960
Description: The square root of 2 is irrational. See zsqrtelqelz 15447 for a generalization to all non-square integers. The proof's core is proven in sqrt2irrlem 14958, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. An older version of this proof was included in The Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first of the "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on his Formalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
sqrt2irr (√‘2) ∉ ℚ

Proof of Theorem sqrt2irr
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 11017 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
2 breq2 4648 . . . . . . . . 9 (𝑛 = 1 → (𝑧 < 𝑛𝑧 < 1))
32imbi1d 331 . . . . . . . 8 (𝑛 = 1 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
43ralbidv 2983 . . . . . . 7 (𝑛 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
5 breq2 4648 . . . . . . . . 9 (𝑛 = 𝑦 → (𝑧 < 𝑛𝑧 < 𝑦))
65imbi1d 331 . . . . . . . 8 (𝑛 = 𝑦 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
76ralbidv 2983 . . . . . . 7 (𝑛 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
8 breq2 4648 . . . . . . . . 9 (𝑛 = (𝑦 + 1) → (𝑧 < 𝑛𝑧 < (𝑦 + 1)))
98imbi1d 331 . . . . . . . 8 (𝑛 = (𝑦 + 1) → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
109ralbidv 2983 . . . . . . 7 (𝑛 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
11 nnnlt1 11035 . . . . . . . . 9 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
1211pm2.21d 118 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
1312rgen 2919 . . . . . . 7 𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))
14 nnrp 11827 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
15 rphalflt 11845 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑦 / 2) < 𝑦)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 / 2) < 𝑦)
17 breq1 4647 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (𝑧 < 𝑦 ↔ (𝑦 / 2) < 𝑦))
18 oveq2 6643 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦 / 2) → (𝑥 / 𝑧) = (𝑥 / (𝑦 / 2)))
1918neeq2d 2851 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦 / 2) → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2019ralbidv 2983 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2117, 20imbi12d 334 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 / 2) → ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2221rspcv 3300 . . . . . . . . . . . . . 14 ((𝑦 / 2) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2322com13 88 . . . . . . . . . . . . 13 ((𝑦 / 2) < 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2416, 23syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
25 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = (𝑧 / 𝑦))
26 zcn 11367 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
2726ad2antlr 762 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℂ)
28 nncn 11013 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℂ)
30 2cnd 11078 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ∈ ℂ)
31 nnne0 11038 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
3231ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ≠ 0)
33 2ne0 11098 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
3433a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ≠ 0)
3527, 29, 30, 32, 34divcan7d 10814 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) / (𝑦 / 2)) = (𝑧 / 𝑦))
3625, 35eqtr4d 2657 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = ((𝑧 / 2) / (𝑦 / 2)))
37 simplr 791 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℤ)
38 simpll 789 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℕ)
3937, 38, 25sqrt2irrlem 14958 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) ∈ ℤ ∧ (𝑦 / 2) ∈ ℕ))
4039simprd 479 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑦 / 2) ∈ ℕ)
4139simpld 475 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑧 / 2) ∈ ℤ)
42 oveq1 6642 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑧 / 2) → (𝑥 / (𝑦 / 2)) = ((𝑧 / 2) / (𝑦 / 2)))
4342neeq2d 2851 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑧 / 2) → ((√‘2) ≠ (𝑥 / (𝑦 / 2)) ↔ (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4443rspcv 3300 . . . . . . . . . . . . . . . . . . 19 ((𝑧 / 2) ∈ ℤ → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4541, 44syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4640, 45embantd 59 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4746necon2bd 2807 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((√‘2) = ((𝑧 / 2) / (𝑦 / 2)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
4836, 47mpd 15 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
4948ex 450 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((√‘2) = (𝑧 / 𝑦) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
5049necon2ad 2806 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ (𝑧 / 𝑦)))
5150ralrimdva 2966 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
5224, 51syld 47 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
53 oveq1 6642 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦))
5453neeq2d 2851 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((√‘2) ≠ (𝑥 / 𝑦) ↔ (√‘2) ≠ (𝑧 / 𝑦)))
5554cbvralv 3166 . . . . . . . . . . 11 (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦) ↔ ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦))
5652, 55syl6ibr 242 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
57 oveq2 6643 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝑥 / 𝑧) = (𝑥 / 𝑦))
5857neeq2d 2851 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / 𝑦)))
5958ralbidv 2983 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6059ceqsralv 3229 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6156, 60sylibrd 249 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
6261ancld 575 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
63 nnleltp1 11417 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦𝑧 < (𝑦 + 1)))
64 nnre 11012 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
65 nnre 11012 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
66 leloe 10109 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6764, 65, 66syl2an 494 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6863, 67bitr3d 270 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6968ancoms 469 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
7069imbi1d 331 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
71 jaob 821 . . . . . . . . . . 11 (((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7270, 71syl6bb 276 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7372ralbidva 2982 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
74 r19.26 3060 . . . . . . . . 9 (∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7573, 74syl6bb 276 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7662, 75sylibrd 249 . . . . . . 7 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
774, 7, 10, 10, 13, 76nnind 11023 . . . . . 6 ((𝑦 + 1) ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
781, 77syl 17 . . . . 5 (𝑦 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
7965ltp1d 10939 . . . . 5 (𝑦 ∈ ℕ → 𝑦 < (𝑦 + 1))
80 breq1 4647 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 < (𝑦 + 1) ↔ 𝑦 < (𝑦 + 1)))
81 df-ne 2792 . . . . . . . . . 10 ((√‘2) ≠ (𝑥 / 𝑦) ↔ ¬ (√‘2) = (𝑥 / 𝑦))
8258, 81syl6bb 276 . . . . . . . . 9 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ (√‘2) = (𝑥 / 𝑦)))
8382ralbidv 2983 . . . . . . . 8 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦)))
84 ralnex 2989 . . . . . . . 8 (∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8583, 84syl6bb 276 . . . . . . 7 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)))
8680, 85imbi12d 334 . . . . . 6 (𝑧 = 𝑦 → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8786rspcv 3300 . . . . 5 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8878, 79, 87mp2d 49 . . . 4 (𝑦 ∈ ℕ → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8988nrex 2997 . . 3 ¬ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)
90 elq 11775 . . . 4 ((√‘2) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦))
91 rexcom 3094 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9290, 91bitri 264 . . 3 ((√‘2) ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9389, 92mtbir 313 . 2 ¬ (√‘2) ∈ ℚ
9493nelir 2897 1 (√‘2) ∉ ℚ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1481  wcel 1988  wne 2791  wnel 2894  wral 2909  wrex 2910   class class class wbr 4644  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   < clt 10059  cle 10060   / cdiv 10669  cn 11005  2c2 11055  cz 11362  cq 11773  +crp 11817  csqrt 13954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957
This theorem is referenced by:  nthruc  14962
  Copyright terms: Public domain W3C validator