MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irr Structured version   Visualization version   GIF version

Theorem sqrt2irr 15604
Description: The square root of 2 is irrational. See zsqrtelqelz 16100 for a generalization to all non-square integers. The proof's core is proven in sqrt2irrlem 15603, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. An older version of this proof was included in The Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first of the "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on his Formalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/ 15603. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
sqrt2irr (√‘2) ∉ ℚ

Proof of Theorem sqrt2irr
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 11652 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
2 breq2 5072 . . . . . . . . 9 (𝑛 = 1 → (𝑧 < 𝑛𝑧 < 1))
32imbi1d 344 . . . . . . . 8 (𝑛 = 1 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
43ralbidv 3199 . . . . . . 7 (𝑛 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
5 breq2 5072 . . . . . . . . 9 (𝑛 = 𝑦 → (𝑧 < 𝑛𝑧 < 𝑦))
65imbi1d 344 . . . . . . . 8 (𝑛 = 𝑦 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
76ralbidv 3199 . . . . . . 7 (𝑛 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
8 breq2 5072 . . . . . . . . 9 (𝑛 = (𝑦 + 1) → (𝑧 < 𝑛𝑧 < (𝑦 + 1)))
98imbi1d 344 . . . . . . . 8 (𝑛 = (𝑦 + 1) → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
109ralbidv 3199 . . . . . . 7 (𝑛 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
11 nnnlt1 11672 . . . . . . . . 9 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
1211pm2.21d 121 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
1312rgen 3150 . . . . . . 7 𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))
14 nnrp 12403 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
15 rphalflt 12421 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑦 / 2) < 𝑦)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 / 2) < 𝑦)
17 breq1 5071 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (𝑧 < 𝑦 ↔ (𝑦 / 2) < 𝑦))
18 oveq2 7166 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦 / 2) → (𝑥 / 𝑧) = (𝑥 / (𝑦 / 2)))
1918neeq2d 3078 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦 / 2) → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2019ralbidv 3199 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2117, 20imbi12d 347 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 / 2) → ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2221rspcv 3620 . . . . . . . . . . . . . 14 ((𝑦 / 2) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2322com13 88 . . . . . . . . . . . . 13 ((𝑦 / 2) < 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2416, 23syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
25 simpr 487 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = (𝑧 / 𝑦))
26 zcn 11989 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
2726ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℂ)
28 nncn 11648 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℂ)
30 2cnd 11718 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ∈ ℂ)
31 nnne0 11674 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
3231ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ≠ 0)
33 2ne0 11744 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
3433a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ≠ 0)
3527, 29, 30, 32, 34divcan7d 11446 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) / (𝑦 / 2)) = (𝑧 / 𝑦))
3625, 35eqtr4d 2861 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = ((𝑧 / 2) / (𝑦 / 2)))
37 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℤ)
38 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℕ)
3937, 38, 25sqrt2irrlem 15603 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) ∈ ℤ ∧ (𝑦 / 2) ∈ ℕ))
4039simprd 498 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑦 / 2) ∈ ℕ)
4139simpld 497 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑧 / 2) ∈ ℤ)
42 oveq1 7165 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑧 / 2) → (𝑥 / (𝑦 / 2)) = ((𝑧 / 2) / (𝑦 / 2)))
4342neeq2d 3078 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑧 / 2) → ((√‘2) ≠ (𝑥 / (𝑦 / 2)) ↔ (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4443rspcv 3620 . . . . . . . . . . . . . . . . . . 19 ((𝑧 / 2) ∈ ℤ → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4541, 44syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4640, 45embantd 59 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4746necon2bd 3034 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((√‘2) = ((𝑧 / 2) / (𝑦 / 2)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
4836, 47mpd 15 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
4948ex 415 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((√‘2) = (𝑧 / 𝑦) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
5049necon2ad 3033 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ (𝑧 / 𝑦)))
5150ralrimdva 3191 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
5224, 51syld 47 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
53 oveq1 7165 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦))
5453neeq2d 3078 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((√‘2) ≠ (𝑥 / 𝑦) ↔ (√‘2) ≠ (𝑧 / 𝑦)))
5554cbvralvw 3451 . . . . . . . . . . 11 (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦) ↔ ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦))
5652, 55syl6ibr 254 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
57 oveq2 7166 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝑥 / 𝑧) = (𝑥 / 𝑦))
5857neeq2d 3078 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / 𝑦)))
5958ralbidv 3199 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6059ceqsralv 3535 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6156, 60sylibrd 261 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
6261ancld 553 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
63 nnleltp1 12040 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦𝑧 < (𝑦 + 1)))
64 nnre 11647 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
65 nnre 11647 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
66 leloe 10729 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6764, 65, 66syl2an 597 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6863, 67bitr3d 283 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6968ancoms 461 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
7069imbi1d 344 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
71 jaob 958 . . . . . . . . . . 11 (((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7270, 71syl6bb 289 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7372ralbidva 3198 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
74 r19.26 3172 . . . . . . . . 9 (∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7573, 74syl6bb 289 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7662, 75sylibrd 261 . . . . . . 7 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
774, 7, 10, 10, 13, 76nnind 11658 . . . . . 6 ((𝑦 + 1) ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
781, 77syl 17 . . . . 5 (𝑦 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
7965ltp1d 11572 . . . . 5 (𝑦 ∈ ℕ → 𝑦 < (𝑦 + 1))
80 breq1 5071 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 < (𝑦 + 1) ↔ 𝑦 < (𝑦 + 1)))
81 df-ne 3019 . . . . . . . . . 10 ((√‘2) ≠ (𝑥 / 𝑦) ↔ ¬ (√‘2) = (𝑥 / 𝑦))
8258, 81syl6bb 289 . . . . . . . . 9 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ (√‘2) = (𝑥 / 𝑦)))
8382ralbidv 3199 . . . . . . . 8 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦)))
84 ralnex 3238 . . . . . . . 8 (∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8583, 84syl6bb 289 . . . . . . 7 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)))
8680, 85imbi12d 347 . . . . . 6 (𝑧 = 𝑦 → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8786rspcv 3620 . . . . 5 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8878, 79, 87mp2d 49 . . . 4 (𝑦 ∈ ℕ → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8988nrex 3271 . . 3 ¬ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)
90 elq 12353 . . . 4 ((√‘2) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦))
91 rexcom 3357 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9290, 91bitri 277 . . 3 ((√‘2) ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9389, 92mtbir 325 . 2 ¬ (√‘2) ∈ ℚ
9493nelir 3128 1 (√‘2) ∉ ℚ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wnel 3125  wral 3140  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cle 10678   / cdiv 11299  cn 11640  2c2 11695  cz 11984  cq 12351  +crp 12392  csqrt 14594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  sqrt2irr0  15606  nthruc  15607  2sq2  26011
  Copyright terms: Public domain W3C validator