MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt2irr Structured version   Visualization version   GIF version

Theorem sqrt2irr 14684
Description: The square root of 2 is irrational. See zsqrtelqelz 15178 for a generalization to all non-square integers. The proof's core is proven in sqr2irrlem 14683, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. An older version of this proof was included in The Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on his Formalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
sqrt2irr (√‘2) ∉ ℚ

Proof of Theorem sqrt2irr
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 10786 . . . . . 6 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
2 breq2 4485 . . . . . . . . 9 (𝑛 = 1 → (𝑧 < 𝑛𝑧 < 1))
32imbi1d 329 . . . . . . . 8 (𝑛 = 1 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
43ralbidv 2873 . . . . . . 7 (𝑛 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
5 breq2 4485 . . . . . . . . 9 (𝑛 = 𝑦 → (𝑧 < 𝑛𝑧 < 𝑦))
65imbi1d 329 . . . . . . . 8 (𝑛 = 𝑦 → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
76ralbidv 2873 . . . . . . 7 (𝑛 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
8 breq2 4485 . . . . . . . . 9 (𝑛 = (𝑦 + 1) → (𝑧 < 𝑛𝑧 < (𝑦 + 1)))
98imbi1d 329 . . . . . . . 8 (𝑛 = (𝑦 + 1) → ((𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
109ralbidv 2873 . . . . . . 7 (𝑛 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑛 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
11 nnnlt1 10804 . . . . . . . . 9 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
1211pm2.21d 116 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
1312rgen 2810 . . . . . . 7 𝑧 ∈ ℕ (𝑧 < 1 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))
14 nnrp 11583 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
15 rphalflt 11601 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑦 / 2) < 𝑦)
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (𝑦 / 2) < 𝑦)
17 breq1 4484 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (𝑧 < 𝑦 ↔ (𝑦 / 2) < 𝑦))
18 oveq2 6433 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑦 / 2) → (𝑥 / 𝑧) = (𝑥 / (𝑦 / 2)))
1918neeq2d 2746 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦 / 2) → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2019ralbidv 2873 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 / 2) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
2117, 20imbi12d 332 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 / 2) → ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2221rspcv 3182 . . . . . . . . . . . . . 14 ((𝑦 / 2) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2322com13 85 . . . . . . . . . . . . 13 ((𝑦 / 2) < 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
2416, 23syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
25 simpr 475 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = (𝑧 / 𝑦))
26 zcn 11122 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
2726ad2antlr 758 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℂ)
28 nncn 10782 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 757 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℂ)
30 2cnd 10847 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ∈ ℂ)
31 nnne0 10807 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
3231ad2antrr 757 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ≠ 0)
33 2ne0 10867 . . . . . . . . . . . . . . . . . . 19 2 ≠ 0
3433a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 2 ≠ 0)
3527, 29, 30, 32, 34divcan7d 10577 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) / (𝑦 / 2)) = (𝑧 / 𝑦))
3625, 35eqtr4d 2551 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (√‘2) = ((𝑧 / 2) / (𝑦 / 2)))
37 simplr 787 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑧 ∈ ℤ)
38 simpll 785 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → 𝑦 ∈ ℕ)
3937, 38, 25sqr2irrlem 14683 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((𝑧 / 2) ∈ ℤ ∧ (𝑦 / 2) ∈ ℕ))
4039simprd 477 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑦 / 2) ∈ ℕ)
4139simpld 473 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (𝑧 / 2) ∈ ℤ)
42 oveq1 6432 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑧 / 2) → (𝑥 / (𝑦 / 2)) = ((𝑧 / 2) / (𝑦 / 2)))
4342neeq2d 2746 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑧 / 2) → ((√‘2) ≠ (𝑥 / (𝑦 / 2)) ↔ (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4443rspcv 3182 . . . . . . . . . . . . . . . . . . 19 ((𝑧 / 2) ∈ ℤ → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4541, 44syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4640, 45embantd 56 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ ((𝑧 / 2) / (𝑦 / 2))))
4746necon2bd 2702 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ((√‘2) = ((𝑧 / 2) / (𝑦 / 2)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
4836, 47mpd 15 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) ∧ (√‘2) = (𝑧 / 𝑦)) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))))
4948ex 448 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((√‘2) = (𝑧 / 𝑦) → ¬ ((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2)))))
5049necon2ad 2701 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → (√‘2) ≠ (𝑧 / 𝑦)))
5150ralrimdva 2856 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → (((𝑦 / 2) ∈ ℕ → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / (𝑦 / 2))) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
5224, 51syld 45 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦)))
53 oveq1 6432 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 / 𝑦) = (𝑧 / 𝑦))
5453neeq2d 2746 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((√‘2) ≠ (𝑥 / 𝑦) ↔ (√‘2) ≠ (𝑧 / 𝑦)))
5554cbvralv 3051 . . . . . . . . . . 11 (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦) ↔ ∀𝑧 ∈ ℤ (√‘2) ≠ (𝑧 / 𝑦))
5652, 55syl6ibr 240 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
57 oveq2 6433 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝑥 / 𝑧) = (𝑥 / 𝑦))
5857neeq2d 2746 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ (√‘2) ≠ (𝑥 / 𝑦)))
5958ralbidv 2873 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6059ceqsralv 3111 . . . . . . . . . 10 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑦)))
6156, 60sylibrd 247 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
6261ancld 573 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
63 nnleltp1 11172 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦𝑧 < (𝑦 + 1)))
64 nnre 10781 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
65 nnre 10781 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
66 leloe 9873 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6764, 65, 66syl2an 492 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧𝑦 ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6863, 67bitr3d 268 . . . . . . . . . . . . 13 ((𝑧 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
6968ancoms 467 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 < (𝑦 + 1) ↔ (𝑧 < 𝑦𝑧 = 𝑦)))
7069imbi1d 329 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
71 jaob 817 . . . . . . . . . . 11 (((𝑧 < 𝑦𝑧 = 𝑦) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7270, 71syl6bb 274 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7372ralbidva 2872 . . . . . . . . 9 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ ∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
74 r19.26 2950 . . . . . . . . 9 (∀𝑧 ∈ ℕ ((𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
7573, 74syl6bb 274 . . . . . . . 8 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ∧ ∀𝑧 ∈ ℕ (𝑧 = 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))))
7662, 75sylibrd 247 . . . . . . 7 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧))))
774, 7, 10, 10, 13, 76nnind 10792 . . . . . 6 ((𝑦 + 1) ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
781, 77syl 17 . . . . 5 (𝑦 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)))
7965ltp1d 10703 . . . . 5 (𝑦 ∈ ℕ → 𝑦 < (𝑦 + 1))
80 breq1 4484 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 < (𝑦 + 1) ↔ 𝑦 < (𝑦 + 1)))
81 df-ne 2686 . . . . . . . . . 10 ((√‘2) ≠ (𝑥 / 𝑦) ↔ ¬ (√‘2) = (𝑥 / 𝑦))
8258, 81syl6bb 274 . . . . . . . . 9 (𝑧 = 𝑦 → ((√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ (√‘2) = (𝑥 / 𝑦)))
8382ralbidv 2873 . . . . . . . 8 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦)))
84 ralnex 2879 . . . . . . . 8 (∀𝑥 ∈ ℤ ¬ (√‘2) = (𝑥 / 𝑦) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8583, 84syl6bb 274 . . . . . . 7 (𝑧 = 𝑦 → (∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧) ↔ ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)))
8680, 85imbi12d 332 . . . . . 6 (𝑧 = 𝑦 → ((𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) ↔ (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8786rspcv 3182 . . . . 5 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ∀𝑥 ∈ ℤ (√‘2) ≠ (𝑥 / 𝑧)) → (𝑦 < (𝑦 + 1) → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))))
8878, 79, 87mp2d 46 . . . 4 (𝑦 ∈ ℕ → ¬ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
8988nrex 2887 . . 3 ¬ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦)
90 elq 11531 . . . 4 ((√‘2) ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦))
91 rexcom 2984 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (√‘2) = (𝑥 / 𝑦) ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9290, 91bitri 262 . . 3 ((√‘2) ∈ ℚ ↔ ∃𝑦 ∈ ℕ ∃𝑥 ∈ ℤ (√‘2) = (𝑥 / 𝑦))
9389, 92mtbir 311 . 2 ¬ (√‘2) ∈ ℚ
9493nelir 2790 1 (√‘2) ∉ ℚ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1938  wne 2684  wnel 2685  wral 2800  wrex 2801   class class class wbr 4481  cfv 5689  (class class class)co 6425  cc 9688  cr 9689  0cc0 9690  1c1 9691   + caddc 9693   < clt 9828  cle 9829   / cdiv 10432  cn 10774  2c2 10824  cz 11117  cq 11529  +crp 11573  csqrt 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-cnex 9746  ax-resscn 9747  ax-1cn 9748  ax-icn 9749  ax-addcl 9750  ax-addrcl 9751  ax-mulcl 9752  ax-mulrcl 9753  ax-mulcom 9754  ax-addass 9755  ax-mulass 9756  ax-distr 9757  ax-i2m1 9758  ax-1ne0 9759  ax-1rid 9760  ax-rnegex 9761  ax-rrecex 9762  ax-cnre 9763  ax-pre-lttri 9764  ax-pre-lttrn 9765  ax-pre-ltadd 9766  ax-pre-mulgt0 9767  ax-pre-sup 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6833  df-1st 6933  df-2nd 6934  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-er 7504  df-en 7717  df-dom 7718  df-sdom 7719  df-sup 8106  df-pnf 9830  df-mnf 9831  df-xr 9832  df-ltxr 9833  df-le 9834  df-sub 10018  df-neg 10019  df-div 10433  df-nn 10775  df-2 10833  df-3 10834  df-n0 11047  df-z 11118  df-uz 11427  df-q 11530  df-rp 11574  df-seq 12531  df-exp 12590  df-cj 13544  df-re 13545  df-im 13546  df-sqrt 13680  df-abs 13681
This theorem is referenced by:  nthruc  14686
  Copyright terms: Public domain W3C validator