Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pmon1p Structured version   Visualization version   GIF version

Theorem uc1pmon1p 23815
 Description: Make a unitic polynomial monic by multiplying a factor to normalize the leading coefficient. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
uc1pmon1p.c 𝐶 = (Unic1p𝑅)
uc1pmon1p.m 𝑀 = (Monic1p𝑅)
uc1pmon1p.p 𝑃 = (Poly1𝑅)
uc1pmon1p.t · = (.r𝑃)
uc1pmon1p.a 𝐴 = (algSc‘𝑃)
uc1pmon1p.d 𝐷 = ( deg1𝑅)
uc1pmon1p.i 𝐼 = (invr𝑅)
Assertion
Ref Expression
uc1pmon1p ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ 𝑀)

Proof of Theorem uc1pmon1p
StepHypRef Expression
1 uc1pmon1p.p . . . . 5 𝑃 = (Poly1𝑅)
21ply1ring 19537 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
32adantr 481 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → 𝑃 ∈ Ring)
4 uc1pmon1p.a . . . . . 6 𝐴 = (algSc‘𝑃)
5 eqid 2621 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2621 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
71, 4, 5, 6ply1sclf 19574 . . . . 5 (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶(Base‘𝑃))
87adantr 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → 𝐴:(Base‘𝑅)⟶(Base‘𝑃))
9 uc1pmon1p.d . . . . . 6 𝐷 = ( deg1𝑅)
10 eqid 2621 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
11 uc1pmon1p.c . . . . . 6 𝐶 = (Unic1p𝑅)
129, 10, 11uc1pldg 23812 . . . . 5 (𝑋𝐶 → ((coe1𝑋)‘(𝐷𝑋)) ∈ (Unit‘𝑅))
13 uc1pmon1p.i . . . . . 6 𝐼 = (invr𝑅)
1410, 13, 5ringinvcl 18597 . . . . 5 ((𝑅 ∈ Ring ∧ ((coe1𝑋)‘(𝐷𝑋)) ∈ (Unit‘𝑅)) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Base‘𝑅))
1512, 14sylan2 491 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Base‘𝑅))
168, 15ffvelrnd 6316 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) ∈ (Base‘𝑃))
171, 6, 11uc1pcl 23807 . . . 4 (𝑋𝐶𝑋 ∈ (Base‘𝑃))
1817adantl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → 𝑋 ∈ (Base‘𝑃))
19 uc1pmon1p.t . . . 4 · = (.r𝑃)
206, 19ringcl 18482 . . 3 ((𝑃 ∈ Ring ∧ (𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) ∈ (Base‘𝑃) ∧ 𝑋 ∈ (Base‘𝑃)) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ (Base‘𝑃))
213, 16, 18, 20syl3anc 1323 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ (Base‘𝑃))
22 simpl 473 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → 𝑅 ∈ Ring)
23 eqid 2621 . . . . . . . 8 (RLReg‘𝑅) = (RLReg‘𝑅)
2423, 10unitrrg 19212 . . . . . . 7 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
2524adantr 481 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
2610, 13unitinvcl 18595 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1𝑋)‘(𝐷𝑋)) ∈ (Unit‘𝑅)) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Unit‘𝑅))
2712, 26sylan2 491 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Unit‘𝑅))
2825, 27sseldd 3584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (RLReg‘𝑅))
299, 1, 23, 6, 19, 4deg1mul3 23779 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (RLReg‘𝑅) ∧ 𝑋 ∈ (Base‘𝑃)) → (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) = (𝐷𝑋))
3022, 28, 18, 29syl3anc 1323 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) = (𝐷𝑋))
319, 11uc1pdeg 23811 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐷𝑋) ∈ ℕ0)
3230, 31eqeltrd 2698 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) ∈ ℕ0)
33 eqid 2621 . . . . 5 (0g𝑃) = (0g𝑃)
349, 1, 33, 6deg1nn0clb 23754 . . . 4 ((𝑅 ∈ Ring ∧ ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ (Base‘𝑃)) → (((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ≠ (0g𝑃) ↔ (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) ∈ ℕ0))
3521, 34syldan 487 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ≠ (0g𝑃) ↔ (𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) ∈ ℕ0))
3632, 35mpbird 247 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ≠ (0g𝑃))
3730fveq2d 6152 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))) = ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷𝑋)))
38 eqid 2621 . . . . . 6 (.r𝑅) = (.r𝑅)
391, 6, 5, 4, 19, 38coe1sclmul 19571 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑃)) → (coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) = ((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘𝑓 (.r𝑅)(coe1𝑋)))
4022, 15, 18, 39syl3anc 1323 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋)) = ((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘𝑓 (.r𝑅)(coe1𝑋)))
4140fveq1d 6150 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷𝑋)) = (((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘𝑓 (.r𝑅)(coe1𝑋))‘(𝐷𝑋)))
42 nn0ex 11242 . . . . . . 7 0 ∈ V
4342a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ℕ0 ∈ V)
44 fvex 6158 . . . . . . 7 (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ V
4544a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (𝐼‘((coe1𝑋)‘(𝐷𝑋))) ∈ V)
46 eqid 2621 . . . . . . . 8 (coe1𝑋) = (coe1𝑋)
4746, 6, 1, 5coe1f 19500 . . . . . . 7 (𝑋 ∈ (Base‘𝑃) → (coe1𝑋):ℕ0⟶(Base‘𝑅))
48 ffn 6002 . . . . . . 7 ((coe1𝑋):ℕ0⟶(Base‘𝑅) → (coe1𝑋) Fn ℕ0)
4918, 47, 483syl 18 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (coe1𝑋) Fn ℕ0)
50 eqidd 2622 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐶) ∧ (𝐷𝑋) ∈ ℕ0) → ((coe1𝑋)‘(𝐷𝑋)) = ((coe1𝑋)‘(𝐷𝑋)))
5143, 45, 49, 50ofc1 6873 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐶) ∧ (𝐷𝑋) ∈ ℕ0) → (((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘𝑓 (.r𝑅)(coe1𝑋))‘(𝐷𝑋)) = ((𝐼‘((coe1𝑋)‘(𝐷𝑋)))(.r𝑅)((coe1𝑋)‘(𝐷𝑋))))
5231, 51mpdan 701 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘𝑓 (.r𝑅)(coe1𝑋))‘(𝐷𝑋)) = ((𝐼‘((coe1𝑋)‘(𝐷𝑋)))(.r𝑅)((coe1𝑋)‘(𝐷𝑋))))
53 eqid 2621 . . . . . 6 (1r𝑅) = (1r𝑅)
5410, 13, 38, 53unitlinv 18598 . . . . 5 ((𝑅 ∈ Ring ∧ ((coe1𝑋)‘(𝐷𝑋)) ∈ (Unit‘𝑅)) → ((𝐼‘((coe1𝑋)‘(𝐷𝑋)))(.r𝑅)((coe1𝑋)‘(𝐷𝑋))) = (1r𝑅))
5512, 54sylan2 491 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐼‘((coe1𝑋)‘(𝐷𝑋)))(.r𝑅)((coe1𝑋)‘(𝐷𝑋))) = (1r𝑅))
5652, 55eqtrd 2655 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → (((ℕ0 × {(𝐼‘((coe1𝑋)‘(𝐷𝑋)))}) ∘𝑓 (.r𝑅)(coe1𝑋))‘(𝐷𝑋)) = (1r𝑅))
5737, 41, 563eqtrd 2659 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))) = (1r𝑅))
58 uc1pmon1p.m . . 3 𝑀 = (Monic1p𝑅)
591, 6, 33, 9, 58, 53ismon1p 23806 . 2 (((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ 𝑀 ↔ (((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ (Base‘𝑃) ∧ ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ≠ (0g𝑃) ∧ ((coe1‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))‘(𝐷‘((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋))) = (1r𝑅)))
6021, 36, 57, 59syl3anbrc 1244 1 ((𝑅 ∈ Ring ∧ 𝑋𝐶) → ((𝐴‘(𝐼‘((coe1𝑋)‘(𝐷𝑋)))) · 𝑋) ∈ 𝑀)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  Vcvv 3186   ⊆ wss 3555  {csn 4148   × cxp 5072   Fn wfn 5842  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604   ∘𝑓 cof 6848  ℕ0cn0 11236  Basecbs 15781  .rcmulr 15863  0gc0g 16021  1rcur 18422  Ringcrg 18468  Unitcui 18560  invrcinvr 18592  RLRegcrlreg 19198  algSccascl 19230  Poly1cpl1 19466  coe1cco1 19467   deg1 cdg1 23718  Monic1pcmn1 23789  Unic1pcuc1p 23790 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-gsum 16024  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-subrg 18699  df-lmod 18786  df-lss 18852  df-rlreg 19202  df-ascl 19233  df-psr 19275  df-mvr 19276  df-mpl 19277  df-opsr 19279  df-psr1 19469  df-vr1 19470  df-ply1 19471  df-coe1 19472  df-cnfld 19666  df-mdeg 23719  df-deg1 23720  df-mon1 23794  df-uc1p 23795 This theorem is referenced by:  ig1peu  23835
 Copyright terms: Public domain W3C validator