Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzequa Structured version   Visualization version   GIF version

Theorem zlmodzxzequa 41573
Description: Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzequa.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzequa.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequa.t = ( ·𝑠𝑍)
zlmodzxzequa.m = (-g𝑍)
zlmodzxzequa.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzequa.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
zlmodzxzequa ((2 𝐴) (3 𝐵)) = 0

Proof of Theorem zlmodzxzequa
StepHypRef Expression
1 3cn 11039 . . . . . . . 8 3 ∈ ℂ
212timesi 11091 . . . . . . 7 (2 · 3) = (3 + 3)
3 3p3e6 11105 . . . . . . 7 (3 + 3) = 6
42, 3eqtri 2643 . . . . . 6 (2 · 3) = 6
5 3t2e6 11123 . . . . . 6 (3 · 2) = 6
64, 5oveq12i 6616 . . . . 5 ((2 · 3) − (3 · 2)) = (6 − 6)
7 6cn 11046 . . . . . 6 6 ∈ ℂ
87subidi 10296 . . . . 5 (6 − 6) = 0
96, 8eqtri 2643 . . . 4 ((2 · 3) − (3 · 2)) = 0
109opeq2i 4374 . . 3 ⟨0, ((2 · 3) − (3 · 2))⟩ = ⟨0, 0⟩
11 2t6m3t4e0 41414 . . . 4 ((2 · 6) − (3 · 4)) = 0
1211opeq2i 4374 . . 3 ⟨1, ((2 · 6) − (3 · 4))⟩ = ⟨1, 0⟩
1310, 12preq12i 4243 . 2 {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
14 zlmodzxzequa.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
1514oveq2i 6615 . . . . 5 (2 𝐴) = (2 {⟨0, 3⟩, ⟨1, 6⟩})
16 2z 11353 . . . . . 6 2 ∈ ℤ
17 3z 11354 . . . . . 6 3 ∈ ℤ
18 6nn 11133 . . . . . . 7 6 ∈ ℕ
1918nnzi 11345 . . . . . 6 6 ∈ ℤ
20 zlmodzxzequa.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
21 zlmodzxzequa.t . . . . . . 7 = ( ·𝑠𝑍)
2220, 21zlmodzxzscm 41423 . . . . . 6 ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩})
2316, 17, 19, 22mp3an 1421 . . . . 5 (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
2415, 23eqtri 2643 . . . 4 (2 𝐴) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
25 zlmodzxzequa.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
2625oveq2i 6615 . . . . 5 (3 𝐵) = (3 {⟨0, 2⟩, ⟨1, 4⟩})
27 4z 11355 . . . . . 6 4 ∈ ℤ
2820, 21zlmodzxzscm 41423 . . . . . 6 ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩})
2917, 16, 27, 28mp3an 1421 . . . . 5 (3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}
3026, 29eqtri 2643 . . . 4 (3 𝐵) = {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}
3124, 30oveq12i 6616 . . 3 ((2 𝐴) (3 𝐵)) = ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩})
32 zmulcl 11370 . . . . 5 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ)
3316, 17, 32mp2an 707 . . . 4 (2 · 3) ∈ ℤ
34 zmulcl 11370 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ)
3517, 16, 34mp2an 707 . . . 4 (3 · 2) ∈ ℤ
36 zmulcl 11370 . . . . 5 ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ)
3716, 19, 36mp2an 707 . . . 4 (2 · 6) ∈ ℤ
38 zmulcl 11370 . . . . 5 ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ)
3917, 27, 38mp2an 707 . . . 4 (3 · 4) ∈ ℤ
40 zlmodzxzequa.m . . . . 5 = (-g𝑍)
4120, 40zlmodzxzsub 41426 . . . 4 ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}) = {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩})
4233, 35, 37, 39, 41mp4an 708 . . 3 ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}) = {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩}
4331, 42eqtri 2643 . 2 ((2 𝐴) (3 𝐵)) = {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩}
44 zlmodzxzequa.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
4513, 43, 443eqtr4i 2653 1 ((2 𝐴) (3 𝐵)) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  {cpr 4150  cop 4154  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885  cmin 10210  2c2 11014  3c3 11015  4c4 11016  6c6 11018  cz 11321   ·𝑠 cvsca 15866  -gcsg 17345  ringzring 19737   freeLMod cfrlm 20009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-0g 16023  df-prds 16029  df-pws 16031  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-cmn 18116  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-cnfld 19666  df-zring 19738  df-dsmm 19995  df-frlm 20010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator