ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ltpnf Unicode version

Theorem 0ltpnf 9904
Description: Zero is less than plus infinity (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0ltpnf  |-  0  < +oo

Proof of Theorem 0ltpnf
StepHypRef Expression
1 0re 8072 . 2  |-  0  e.  RR
2 ltpnf 9902 . 2  |-  ( 0  e.  RR  ->  0  < +oo )
31, 2ax-mp 5 1  |-  0  < +oo
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   class class class wbr 4044   RRcr 7924   0cc0 7925   +oocpnf 8104    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-1re 8019  ax-addrcl 8022  ax-rnegex 8034
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-xr 8111  df-ltxr 8112
This theorem is referenced by:  xposdif  10004
  Copyright terms: Public domain W3C validator