| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ltpnf | GIF version | ||
| Description: Zero is less than plus infinity (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 0ltpnf | ⊢ 0 < +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8071 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | ltpnf 9901 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 class class class wbr 4043 ℝcr 7923 0cc0 7924 +∞cpnf 8103 < clt 8106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-1re 8018 ax-addrcl 8021 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-pnf 8108 df-xr 8110 df-ltxr 8111 |
| This theorem is referenced by: xposdif 10003 |
| Copyright terms: Public domain | W3C validator |