ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpnf Unicode version

Theorem ltpnf 9937
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltpnf  |-  ( A  e.  RR  ->  A  < +oo )

Proof of Theorem ltpnf
StepHypRef Expression
1 eqid 2207 . . . 4  |- +oo  = +oo
2 orc 714 . . . 4  |-  ( ( A  e.  RR  /\ +oo  = +oo )  -> 
( ( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) )
31, 2mpan2 425 . . 3  |-  ( A  e.  RR  ->  (
( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) )
43olcd 736 . 2  |-  ( A  e.  RR  ->  (
( ( ( A  e.  RR  /\ +oo  e.  RR )  /\  A  <RR +oo )  \/  ( A  = -oo  /\ +oo  = +oo ) )  \/  ( ( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) ) )
5 rexr 8153 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
6 pnfxr 8160 . . 3  |- +oo  e.  RR*
7 ltxr 9932 . . 3  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A  < +oo  <->  ( ( ( ( A  e.  RR  /\ +oo  e.  RR )  /\  A  <RR +oo )  \/  ( A  = -oo  /\ +oo  = +oo ) )  \/  ( ( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) ) ) )
85, 6, 7sylancl 413 . 2  |-  ( A  e.  RR  ->  ( A  < +oo  <->  ( ( ( ( A  e.  RR  /\ +oo  e.  RR )  /\  A  <RR +oo )  \/  ( A  = -oo  /\ +oo  = +oo ) )  \/  ( ( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) ) ) )
94, 8mpbird 167 1  |-  ( A  e.  RR  ->  A  < +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   class class class wbr 4059   RRcr 7959    <RR cltrr 7964   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-xr 8146  df-ltxr 8147
This theorem is referenced by:  ltpnfd  9938  0ltpnf  9939  xrlttr  9952  xrltso  9953  xrlttri3  9954  nltpnft  9971  npnflt  9972  xrrebnd  9976  xrre  9977  xltnegi  9992  xltadd1  10033  xposdif  10039  elioc2  10093  elicc2  10095  ioomax  10105  ioopos  10107  elioopnf  10124  elicopnf  10126  qbtwnxr  10437  dfrp2  10443  filtinf  10973  xrmaxltsup  11684  fprodge0  12063  fprodge1  12065  xblss2ps  14991
  Copyright terms: Public domain W3C validator