ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpnf Unicode version

Theorem ltpnf 9976
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltpnf  |-  ( A  e.  RR  ->  A  < +oo )

Proof of Theorem ltpnf
StepHypRef Expression
1 eqid 2229 . . . 4  |- +oo  = +oo
2 orc 717 . . . 4  |-  ( ( A  e.  RR  /\ +oo  = +oo )  -> 
( ( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) )
31, 2mpan2 425 . . 3  |-  ( A  e.  RR  ->  (
( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) )
43olcd 739 . 2  |-  ( A  e.  RR  ->  (
( ( ( A  e.  RR  /\ +oo  e.  RR )  /\  A  <RR +oo )  \/  ( A  = -oo  /\ +oo  = +oo ) )  \/  ( ( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) ) )
5 rexr 8192 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
6 pnfxr 8199 . . 3  |- +oo  e.  RR*
7 ltxr 9971 . . 3  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A  < +oo  <->  ( ( ( ( A  e.  RR  /\ +oo  e.  RR )  /\  A  <RR +oo )  \/  ( A  = -oo  /\ +oo  = +oo ) )  \/  ( ( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) ) ) )
85, 6, 7sylancl 413 . 2  |-  ( A  e.  RR  ->  ( A  < +oo  <->  ( ( ( ( A  e.  RR  /\ +oo  e.  RR )  /\  A  <RR +oo )  \/  ( A  = -oo  /\ +oo  = +oo ) )  \/  ( ( A  e.  RR  /\ +oo  = +oo )  \/  ( A  = -oo  /\ +oo  e.  RR ) ) ) ) )
94, 8mpbird 167 1  |-  ( A  e.  RR  ->  A  < +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   class class class wbr 4083   RRcr 7998    <RR cltrr 8003   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180    < clt 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-pnf 8183  df-xr 8185  df-ltxr 8186
This theorem is referenced by:  ltpnfd  9977  0ltpnf  9978  xrlttr  9991  xrltso  9992  xrlttri3  9993  nltpnft  10010  npnflt  10011  xrrebnd  10015  xrre  10016  xltnegi  10031  xltadd1  10072  xposdif  10078  elioc2  10132  elicc2  10134  ioomax  10144  ioopos  10146  elioopnf  10163  elicopnf  10165  qbtwnxr  10477  dfrp2  10483  filtinf  11013  xrmaxltsup  11769  fprodge0  12148  fprodge1  12150  xblss2ps  15078
  Copyright terms: Public domain W3C validator