Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltpnf | Unicode version |
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltpnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . . 4 | |
2 | orc 702 | . . . 4 | |
3 | 1, 2 | mpan2 422 | . . 3 |
4 | 3 | olcd 724 | . 2 |
5 | rexr 7944 | . . 3 | |
6 | pnfxr 7951 | . . 3 | |
7 | ltxr 9711 | . . 3 | |
8 | 5, 6, 7 | sylancl 410 | . 2 |
9 | 4, 8 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 class class class wbr 3982 cr 7752 cltrr 7757 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-xr 7937 df-ltxr 7938 |
This theorem is referenced by: ltpnfd 9717 0ltpnf 9718 xrlttr 9731 xrltso 9732 xrlttri3 9733 nltpnft 9750 npnflt 9751 xrrebnd 9755 xrre 9756 xltnegi 9771 xltadd1 9812 xposdif 9818 elioc2 9872 elicc2 9874 ioomax 9884 ioopos 9886 elioopnf 9903 elicopnf 9905 qbtwnxr 10193 dfrp2 10199 filtinf 10705 xrmaxltsup 11199 fprodge0 11578 fprodge1 11580 xblss2ps 13044 |
Copyright terms: Public domain | W3C validator |